首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An engineered protein tag for multiprotein labeling in living cells   总被引:3,自引:0,他引:3  
The visualization of complex cellular processes involving multiple proteins requires the use of spectroscopically distinguishable fluorescent reporters. We have previously introduced the SNAP-tag as a general tool for the specific labeling of SNAP-tag fusion proteins in living cells. The SNAP-tag is derived from the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) and can be covalently labeled in living cells using O6-benzylguanine derivatives bearing a chemical probe. Here we report the generation of an AGT-based tag, named CLIP-tag, which reacts specifically with O2-benzylcytosine derivatives. Because SNAP-tag and CLIP-tag possess orthogonal substrate specificities, SNAP and CLIP fusion proteins can be labeled simultaneously and specifically with different molecular probes in living cells. We furthermore show simultaneous pulse-chase experiments to visualize different generations of two different proteins in one sample.  相似文献   

3.
The specific and covalent labeling of fusion proteins with synthetic molecules opens up new ways to study protein function in the living cell. Here we present a novel method that allows for the specific and exclusive extracellular labeling of proteins on the surfaces of live cells with a large variety of synthetic molecules including fluorophores, protein ligands, or quantum dots. The approach is based on the specific labeling of fusion proteins of acyl carrier protein with synthetic molecules through post-translational modification catalyzed by phosphopantetheine transferase. The specificity and versatility of the labeling should allow it to become an important tool for studying and manipulating cell surface proteins and for complementing existing approaches in cell surface engineering.  相似文献   

4.
A general method for the covalent immobilization of fusion proteins is presented. The approach is based on the unusual mechanism of the human O6-alkylguanine-DNA alkyltransferase, which irreversibly transfers the alkyl group from its substrate, alkylated or benzylated guanine, to a reactive cysteine residue. By attaching the benzyl group to a surface, hAGT fusion proteins immobilize themselves in a specific and covalent manner. The specificity of the reaction of hAGT with its substrate even allows the specific immobilization of hAGT fusion proteins directly out of cell extracts, making the approach an attractive alternative to currently used immobilization procedures.  相似文献   

5.
乔庆龙  周伟  陈婕  刘文娟  苗露  尹文婷  徐兆超 《色谱》2019,37(8):872-877
为将生物体内微观的蛋白行为可视化并以宏观信号呈现出来对蛋白进行实时、动态分析,借助SNAP-tag蛋白标签技术与有机小分子荧光染料,构建了一系列用于活细胞内实时监测目标蛋白的免洗荧光探针。标签蛋白SNAP-tag能够特异性识别探针中的苄基鸟嘌呤,从而使目标蛋白共价连接上荧光团(萘酰亚胺),携带上荧光信使。此外,由于萘酰亚胺从水环境中被牵引至SNAP-tag蛋白的疏水空腔,其荧光信号呈现出2~13倍的增强。通过SNAP-tag标签蛋白与目标蛋白的融合,该荧光探针实现了对活细胞内线粒体蛋白CoX8A及核内蛋白H2B特异性识别,在免洗条件下完成了对目标蛋白的实时追踪及原位分析。  相似文献   

6.
DNA duplexes containing a directly opposed O(4)-2'-deoxythymidine-alkyl-O(4)-2'-deoxythymidine (O(4)-dT-alkyl-O(4)-dT) interstrand cross-link (ICL) have been prepared by the synthesis of cross-linked nucleoside dimers which were converted to phosphoramidites to produce site specific ICL. ICL duplexes containing alkyl chains of four and seven methylene groups were prepared and characterized by mass spectrometry and nuclease digests. Thermal denaturation experiments revealed four and seven methylene containing ICL increased the T(m) of the duplex with respect to the non-cross-linked control with an observed decrease in enthalpy based on thermodynamic analysis of the denaturation curves. Circular dichroism experiments on the ICL duplexes indicated minimal difference from B-form DNA structure. These ICL were used for DNA repair studies with O(6)-alkylguanine DNA alkyltransferase (AGT) proteins from human (hAGT) and E. coli (Ada-C and OGT), whose purpose is to remove O(6)-alkylguanine and in some cases O(4)-alkylthymine lesions. It has been previously shown that hAGT can repair O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine ICL. The O(4)-dT-alkyl-O(4)-dT ICL prepared in this study were found to evade repair by hAGT, OGT and Ada-C. Electromobility shift assay (EMSA) results indicated that the absence of any repair by hAGT was not a result of binding. OGT was the only AGT to show activity in the repair of oligonucleotides containing the mono-adducts O(4)-butyl-4-ol-2'-deoxythymidine and O(4)-heptyl-7-ol-2'-deoxythymidine. Binding experiments conducted with hAGT demonstrated that the protein bound O(4)-alkylthymine lesions with similar affinities to O(6)-methylguanine, which hAGT repairs efficiently, suggesting the lack of O(4)-alkylthymine repair by hAGT is not a function of recognition.  相似文献   

7.
We report improved syntheses of the Pennsylvania Green and 4-carboxy-Pennsylvania Green fluorophores; the latter compound was prepared from methyl 4-iodo-3-methylbenzoate in a three-pot process (32% overall yield). Chinese hamster ovary cells expressing O6-alkylguanine-DNA alkyltransferase fusion proteins were treated with Pennsylvania Green and Oregon Green linked to O6-benzylguanine (SNAP-Tag substrates). Analysis of living cells by confocal microscopy revealed that Pennsylvania Green derivatives exhibit substantially higher cell permeability than analogous Oregon Green-derived molecular probes.  相似文献   

8.
The human DNA-repair O (6)-alkylguanine DNA alkyltransferase (MGMT or hAGT) protein protects DNA from environmental alkylating agents and also plays an important role in tumor resistance to chemotherapy treatment. Available inhibitors, based on pseudosubstrate analogs, have been shown to induce substantial bone marrow toxicity in vivo. These deficiencies and the important role of MGMT as a resistance mechanism in the treatment of some tumors with dismal prognosis like glioblastoma multiforme, the most common and lethal primary malignant brain tumor, are increasing the attention toward the development of improved MGMT inhibitors. Here, we report the identification for the first time of novel non-nucleosidic MGMT inhibitors by using docking and virtual screening techniques. The discovered compounds are shown to be active in both in vitro and in vivo cellular assays, with activities in the low to medium micromolar range. The chemical structures of these new compounds can be classified into two families according to their chemical architecture. The first family corresponds to quinolinone derivatives, while the second is formed by alkylphenyl-triazolo-pyrimidine derivatives. The predicted inhibitor protein interactions suggest that the inhibitor binding mode mimics the complex between the excised, flipped out damaged base and MGMT. This study opens the door to the development of a new generation of MGMT inhibitors.  相似文献   

9.
We report here the development of a general strategy for site-specific labeling of proteins with small molecules by posttranslational modification enzyme, phosphopantetheinyl transferase Sfp. The target proteins are expressed as fusions to the peptide carrier protein (PCP) excised from nonribosomal peptide synthetase, and Sfp catalyzes the covalent modification of a specific serine residue on PCP by the small molecule-phosphopantetheinyl conjugate. The labeling reaction proceeds with high specificity and efficiency, targeting PCP fusion proteins in the cell lysate. The PCP tag has been shown to be compatible with various proteins, and Sfp-catalyzed PCP modification, compatible with various small-molecule probes conjugated to coenzyme A, highlighting the potential of the PCP tag for site-specific protein labeling with small molecules.  相似文献   

10.
Protein turnover critically influences many biological functions, yet methods have been lacking to assess this parameter in?vivo. Here, we demonstrate how chemical labeling of SNAP-tag fusion proteins can be exploited to measure the half-life of resident intracellular and extracellular proteins in living mice. First, we demonstrate that SNAP-tag substrates have wide?bioavailability in mice and can be used for the specific in?vivo labeling of SNAP-tag fusion proteins. We then apply near-infrared probes to perform noninvasive imaging of in?vivo-labeled tumors. Finally, we use SNAP-mediated chemical pulse-chase labeling to perform measurement of the in?vivo half-life of different extra- and intracellular proteins. These results open broad perspectives for studying protein function in living animals.  相似文献   

11.
Small molecules that dimerize proteins in living cells provide powerful probes of biological processes and have potential as tools for the identification of protein targets of natural products. We synthesized 7-alpha-substituted derivatives of beta-estradiol tethered to the natural product biotin to regulate heterodimerization of estrogen receptor (ER) and streptavidin (SA) proteins expressed as components of a yeast three-hybrid system. Addition of an estradiol-biotin chimera bearing a 19-atom linker to yeast expressing DNA-bound ER-alpha or ER-beta LexA fusion proteins and wild-type SA protein fused to the B42 activation domain activated reporter gene expression by as much as 450-fold in vivo (10 muM ligand). Comparative analysis of lower affinity Y43A (biotin Kd approximately 100 pM) and W120A (biotin Kd approximately 100 nM) mutants of SA indicated that moderate affinity interactions can be readily detected with this system. Comparison of a 7-alpha-substituted estradiol-biotin chimera with a structurally similar dexamethasone-biotin chimera revealed that yeast expressing ER proteins can detect cognate ligands with up to 5-fold greater potency and 70-fold higher activity than yeast expressing analogous glucocorticoid receptor (GR) proteins. This approach may facilitate the identification of protein targets of biologically active small molecules screened against genetically encoded libraries of proteins expressed in yeast three-hybrid systems.  相似文献   

12.
In vivo carrier protein tagging has recently become an attractive target for the site-specific modification of fusion systems and new approaches to natural product proteomics. A detailed study of pantetheine analogues was performed in order to identify suitable partners for covalent protein labeling inside living cells. A rapid synthesis of pantothenamide analogues was developed and used to produce a panel which was evaluated for in vitro and in vivo protein labeling. Kinetic comparisons allowed the construction of a structure-activity relationship to pinpoint the linker, dye, and bioorthogonal reporter of choice for carrier protein labeling. Finally bioorthogonal pantetheine analogues were shown to target carrier proteins with high specificity in vivo and undergo chemoselective ligation to reporters in crude cell lysate. The methods demonstrated here allow carrier proteins to be visualized and isolated for the first time without the need for antibody techniques and set the stage for the future use of carrier protein fusions in chemical biology.  相似文献   

13.
The ability to modify target "native" (endogenous) proteins selectively in living cells with synthetic molecules should provide powerful tools for chemical biology. To this end, we recently developed a novel protein labeling technique termed ligand-directed tosyl (LDT) chemistry. This method uses labeling reagents in which a protein ligand and a synthetic probe are connected by a tosylate ester group. We previously demonstrated its applicability to the selective chemical labeling of several native proteins in living cells and mice. However, many fundamental features of this chemistry remain to be studied. In this work, we investigated the relationship between the LDT reagent structure and labeling properties by using native FK506-binding protein 12 (FKBP12) as a target protein. In vitro experiments revealed that the length and rigidity of the spacer structure linking the protein ligand and the tosylate group have significant effects on the overall labeling yield and labeling site. In addition to histidine, which we reported previously, tyrosine and glutamate residues were identified as amino acids that are modified by LDT-mediated labeling. Through the screening of various spacer structures, piperazine was found to be optimal for FKBP12 labeling in terms of labeling efficiency and site specificity. Using a piperazine-based LDT reagent containing a photoreactive probe, we successfully demonstrated the labeling and UV-induced covalent cross-linking of FKBP12 and its interacting proteins in vitro and in living cells. This study not only furthers our understanding of the basic reaction properties of LDT chemistry but also extends the applicability of this method to the investigation of biological processes in mammalian cells.  相似文献   

14.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

15.
Chemical proteomics relies primarily on click‐chemistry‐based protein labeling and biotin‐streptavidin enrichment, but these techniques have inherent limitations. Enrichment of intracellular proteins using a totally synthetic host–guest complex is described, overcoming the problem associated with the classical approach. We achieve this by affinity‐based protein labeling with a target‐specific probe molecule conjugated to a high‐affinity guest (suberanilohydroxamic acid–ammonium‐adamantane; SAHA‐Ad) and then enriching the labeled species using a cucurbit[7]uril bead. This method shows high specificity for labeled molecules in a MDA‐MB‐231 breast cancer cell lysate. Moreover, this method shows promise for labeling proteins in live cells.  相似文献   

16.
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.  相似文献   

17.
18.
Controlling protein dimerization with small molecules has broad application to the study of protein function. Rapamycin has two binding surfaces: one that binds to FKBP12 and the other to the Frb domain of mTor/FRAP, directing their dimerization. Rapamycin is a potent cell growth inhibitor, but chemical modification of the surface contacting Frb alleviates this effect. Productive interactions with Frb-fused proteins can be restored by mutation of Frb to accommodate the rapamycin analog (a rapalog). We have quantitatively assessed the interaction between rapalogs functionalized at C16 and C20 and a panel of Frb mutants. Several drug-Frb mutant combinations have different and nonoverlapping specificities. These Frb-rapalog partners permit the selective control of different Frb fusion proteins without crossreaction. The orthogonal control of multiple target proteins broadens the capabilities of chemical induction of dimerization to regulate biologic processes.  相似文献   

19.
We demonstrate site-specific reporter labeling of proteins within live cells. By accessing the coenzyme A (CoA) metabolic pathway with a cell-permeable pantetheine analogue, we deliver CoA-bound reporter molecules for post-translational protein modification in vivo. These methods may be applied to natural product pathway manipulation as well as applications in conventional molecular and cellular biology.  相似文献   

20.
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号