首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究团控的形成条件、形成机理是目前团簇科学中的一个热点领域[‘].产生气相团簇的方法主要有Knudsen高温炉扩散法、粒子溅射法、激光气化/分子束法、直接激光气化法·因为不需要另加缓冲气体,直接激光气化法【刀具有对体系真空要求较低,装置简单,容易和飞行时间质谱结  相似文献   

2.
THF/H~2O二元团簇中“幻数”现象研究   总被引:2,自引:0,他引:2  
利用分子束、同步辐射光源和飞行时间质谱研究了HF/H~2O二元团簇体系,观察到了一系列组成为(THF)~n·(H~2O)~mH^+(n=2~5,m=0~n-1)离子峰,其中(THF)~n(H~2O)~n~-~2H^+(n=2~5)离子峰强为“幻数”峰。运用从头算(abinitio)分子轨道法,在HF/3-21G基组水平上对(THF)~n(H~2O)~n~-~2H^+(n=2~4)团簇几何构型进行了优化,计算结果表明团簇离子(THF)~n(H~2O)~n~-~2H^+具有较大的稳定性,解释了实验中观察到的“幻数”现象。  相似文献   

3.
A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.  相似文献   

4.
六氢吡啶团簇的研究   总被引:1,自引:0,他引:1  
The 6H-pyridine clusters have been studied by the TOF mass spectrometry, the VUV from synchrotron radiation and the molecular beam technique. Three-type clusters are observed in the VUV photoionization mass spectroscopy: Pn+(n=2-5,P stands for 6H-pyridine molecule), PnH+ (n=2-4) and Pn (H2O)m+(n=4,5, m=1;n=6, m=1,2). The PnH+ clusters may have the chain structures, the Pn+ and Pn(H2O)m+ clusters may have the cyclic structures, all of these are formed by the hydrogen-bond.  相似文献   

5.
Infrared spectra of completely size-selected protonated water clusters H+(H2O)n are reported for clusters ranging from n=15 to 100. The behavior of the dangling OH stretch bands shows that the hydrogen bond structure in H+(H2O)n is uniquely different to that of (H2O)n up to the size of n=100, at least. This finding indicates that the presence of an excess proton creates a characteristic morphology in the hydrogen bond network architecture of more than 100 surrounding water molecules.  相似文献   

6.
The observed gas-phase coordination number of K+ in K+(H2O)m clusters is smaller than that observed in bulk solution, where the coordination number has been reported to be between 6 and 8. Both theoretical and gas-phase studies of K+(H2O)m cluster ions point to a coordination number closer to 4. In the gas phase, the coordination number is determined by a variety of factors-the most critical being the magnitude of the K+...ligand pairwise interaction. Decreasing the magnitude of the ion...ligand interaction allows more ligands to directly interact with the cation. One method for decreasing the ion...ligand interaction in K+(H2O)m clusters is to systematically substitute weakly bound ligands for the more strongly bound water molecules. The systematic introduction of para-difluorobenzene (DFB) to K+(H2O)m clusters was monitored using infrared photodissociation spectroscopy in the OH stretching region. By varying the ratio of DFB molecules to water molecules present in K+(H2O)m(DFB)n clusters, the observed coordination number of gas-phase K+ was increased to 8, similar to that reported for bulk solution.  相似文献   

7.
The average solution aggregation state of the ester interchange catalyst 1, obtained by mixing 1 equiv of NaOt-Bu and 3 equiv of NaOC(6)H(4)-4-t-Bu, was determined to be 4.0 by vapor pressure osmometry (VPO) in THF. Low-temperature (1)H NMR spectra of 1 indicated that the THF solution contained a mixture of tetrameric clusters. On the basis of symmetry arguments and the sensitivity of the different species to the alkoxide/aryloxide ratio, the compounds were determined to be mixed clusters with 0:4, 1:3, 2:2, and 3:1 mixtures of the NaOt-Bu and NaOC(6)H(4)-4-t-Bu components. On a per -Ot-Bu basis, each cluster has a similar absolute activity, though the aryloxide-rich catalysts are significantly longer-lived. Unlike 1, catalysts containing ortho-substituted aryloxides, 2, do not give a strictly statistical distribution of clusters, and the activities of these catalysts depend on steric and electronic factors, though the absolute rate differences are not large.  相似文献   

8.
报道了用质谱学方法首次测得的大气中各种水的团簇分布情况.表明在室内大气环境下,水主要是以几个至几十个水分子所组成的分子团簇的形式存在,且团簇的分布与空气湿度,即水在空气中的分压有关.实验中,除观测到空气中也存在前人已报道过的具有笼状结构的H+(H2O)21外,还观测到其他几种较稳定结构的水的团簇,即H+(H2O)4,H+(H2O)10和H+(H2O)15.实验中所测得的水分子团簇分布结果与使用的离子源以及质量分析器种类无关.我们还用碰撞诱导解离(CID)的方法研究了H+(H2O)n(n=4~16)离子的碰撞解离产物,结果表明,对于H+(H2O)n(n=4~16)的离子,其较稳定的离子的碰撞解离产物均为H+(H2O)n(n=4~6).我们还进一步研究了H+(H2O)10离子的碰撞解离产物与碰撞气体(即Ar气)密度的关系,得到了碰撞气体密度与碰撞解离产物分布的关系.  相似文献   

9.
系列同三核铬、锰、铁羧酸配合物的FAB-MS研究   总被引:3,自引:3,他引:0  
进行了系列同三核羧酸配合物〔M3O(O2CR)6Py3〕X(M=Cr,Mn,Fe;R=CH3,C2H5,C6H5;X=Cl-,ClO4-;Py为吡啶)的快原子轰击质谱(FAB-MS)研究。获得了包括配位吡啶在内的完整阳离子峰。在研究其断裂规律时,主要观察到4个系列碎片离子:Ⅰ.〔M3O(O2CR)n〕+,n=6~2;Ⅱ.〔M3O(O2CR)nO〕+,n=5~1;Ⅲ.〔M2O(O2CR)n〕+,n=3~1;Ⅳ.〔M2(O2CR)n〕+,n=4~2。通过对该系列配合物质谱断裂过程的比较和分析,获得了配合物稳定性随金属离子及配体的变化如下:金属离子,Cr>Mn>Fe;桥配基,-CH3CO2>-C2H5CO2>-C6H5CO2;端配基,Py>H2O。本研究及先前的工作〔1,8〕还为某些三核铬,铁羧酸配合物在以乙炔加水或加氢为探针反应中存在活性物种:〔Cr3O(O2CR)3~4〕,〔Fe3O(O2CR)3〕和〔Fe3O-(O2CR)O〕~〔Fe3O4〕提供了佐证  相似文献   

10.
Atmospheric pressure Penning ionization mass spectra of methanol were measured as functions of Ar or He gas pressure in the first vacuum chamber, the position of the skimmer, and the voltage applied between the orifice and the skimmer. When the orifice and the skimmer were coaxial with a distance of 4 mm, the distribution of CH3OH2+(CH3OH)n clusters was only weakly dependent on both Ar pressure (in the range of 19-220 Pa) and orifice-skimmer voltage (in the range of 1-45 V). The ion/molecule reaction CH3OH2+ + CH3OH --> CH3+(CH3OH) + H2O was observed in the free jet expansion, especially at high orifice-skimmer voltage values. When the orifice and the skimmer were off-centered and the distance between them was increased to 18 mm, the formation of large CH3OH2+(CH3OH)n clusters, as well as their dissociation, were seen. The endothermic proton transfer reaction, CH3+(CH3OH) + CH3OH --> CH3OH2+ + CH3OCH3, occurred at high orifice-skimmer voltage. The collision-induced dissociation of cluster ions by He gas in the first vacuum chamber was much more efficient than by Ar. These results demonstrated that the mass spectra are highly dependent on skimmer position and on orifice-skimmer voltage and that ions observed by mass spectrometry do not necessarily reflect the abundance of ions produced in the atmospheric pressure ion source.  相似文献   

11.
V+(CO2)n and V+(CO2)nAr complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected within a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced (IR-REPD) photodissociation spectroscopy. Photofragmentation proceeds exclusively through loss of intact CO2 molecules from V+(CO2)n complexes or by elimination of Ar from V+(CO2)nAr mixed complexes. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of free CO2 at 2349 cm(-1). A linear geometry is confirmed for V+(CO2). Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO2, consistent with structures in which all ligands are bound directly to the metal ion. Fragmentation of the larger clusters terminates at the size of n=4, and a new vibrational band at 2350 cm(-1) assigned to external ligands is observed for V+(CO2)5 and larger cluster sizes. These combined observations indicate that the coordination number for CO2 molecules around V+ is exactly four. Fourfold coordination contrasts with that seen in condensed phase complexes, where a coordination number of six is typical for V+. The spectra of larger complexes provide evidence for an intracluster insertion reaction that produces a metal oxide-carbonyl species.  相似文献   

12.
Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described.  相似文献   

13.
Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.  相似文献   

14.
We report infrared spectra of phenol-(H(2)O)(n) (~20 ≤ n ≤ ~50) in the OH stretching vibrational region. Phenol-(H(2)O)(n) forms essentially the same hydrogen bond (H-bond) network as that of the neat water cluster, (H(2)O)(n+1). The phenyl group enables us to apply the scheme of infrared-ultraviolet double resonance spectroscopy combined with mass spectrometry, achieving the moderate size selectivity (0 ≤ Δn ≤ ~6). The observed spectra show clear decrease of the free OH stretch band intensity relative to that of the H-bonded OH band with increasing cluster size n. This indicates increase of the relative weight of four-coordinated water sites, which have no free OH. Corresponding to the suppression of the free OH band, the absorption peak of the H-bonded OH stretch band rises at ~3350 cm(-1). This spectral change is interpreted in terms of a signature of four-coordinated water sites in the clusters.  相似文献   

15.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

16.
Hydrated alkali metal ion-phenol complexes were studied to model these species in aqueous solution for M=Na and K. IR predissociation spectroscopy in the O-H stretch region was used to analyze the structures of M+(Phenol)(H2O)n cluster ions, for n = 1-4. The onset of hydrogen bonding was observed to occur at n=4. Ab initio calculations were used to qualitatively explore the types of hydrogen-bonded structures of the M+(Phenol)(H2O)4 isomers. By combining the ab initio calculations and IR spectra, several different structures were identified for each metal ion. In contrast to benzene, detailed in a previous study of Na+(Benzene)n(H2O)m [J. Chem. Phys. 110, 8429 (1999)], phenol is able to bind directly to Na+ even in the presence of four waters. This is likely the result of the sigma-type interaction between the phenol oxygen and the ion. With K+, the dominant isomers are those in which the phenol O-H group is involved in a hydrogen bond with the water molecules, while with Na+, the dominant isomers are those in which the phenol O-H group is free and the water molecules are hydrogen-bonded to each other. Spectra and ab initio calculations for the M+(Phenol)Ar cluster ions for M=Na and K are reported to characterize the free phenol O-H stretch in the M+(Phenol) complex. While pi-type configurations were observed for binary M+(Phenol) complexes, sigma-type configurations appear to dominate the hydrated cluster ions.  相似文献   

17.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

18.
The structural and thermodynamic properties of Na+(CH3CN)n, I-(CH3CN)n, and NaI(CH3CN)n clusters have been investigated by means of room-temperature Monte Carlo simulations with model potentials developed to reproduce the properties of small clusters predicted by quantum chemistry. Ions are found to adopt an interior solvation shell structure, with a first solvation shell containing approximately 6 and approximately 8 acetonitrile molecules for large Na+(CH3CN)n and I-(CH3CN)n clusters, respectively. Structural features of Na+(CH3CN)n are found to be similar to those of Na+(H2O)n clusters, but those of I-(CH3CN)n contrast with those of I-(H2O)n, for which "surface" solvation structures were observed. The potential of mean force calculations demonstrates that the NaI ion pair is thermodynamically stable with respect to ground-state ionic dissociation in acetonitrile clusters. The properties of NaI(CH3CN)n clusters exhibit some similarities with NaI(H2O)n clusters, with the existence of contact ion pair and solvent-separated ion pair structures, but, in contrast to water clusters, both types of ion pairs adopt a well-defined interior ionic solvation shell structure in acetonitrile clusters. Whereas contact ion pair species are thermodynamically favored in small clusters, solvent-separated ion pairs tend to become thermodynamically more stable above a cluster size of approximately 26. Hence, ground-state charge separation appears to occur at larger cluster sizes for acetonitrile clusters than for water clusters. We propose that the lack of a large Na+(CH3CN)n product signal in NaI(CH3CN)n multiphoton ionization experiments could arise from extensive stabilization of the ground ionic state by the solvent and possible inhibition of the photoexcitation mechanism, which may be less pronounced for NaI(H2O)n clusters because of surface solvation structures. Alternatively, increased solvent evaporation resulting from larger excess energies upon photoexcitation or major solvent reorganization on the ionized state could account for the observed solvent-selectivity in NaI cluster multiphoton ionization.  相似文献   

19.
Electrospray ionization mass spectra and collision-induced dissociation mass spectra in positive and negative ion modes of five polyhydroxysteroid compounds from starfish were studied. Tandem mass spectra exhibit extensive fragmentation, including sequential neutral losses of H2O molecules and cleavages in the tetracyclic nucleus and side chains. The relative intensity of some peaks in tandem mass spectra enables stereoisomers with the different orientations of the hydroxyl group at C15 in the tetracyclic nucleus to be distinguished. Some data on the fragmentation mechanisms were obtained by H–D exchange and mass spectrometry analysis.  相似文献   

20.
Clathrate hydrates are of great importance in many aspects. However, hydrate formation and dissociation mechanisms, essential to all hydrate applications, are still not well understood due to the limitations of experimental techniques capable of providing dynamic and structural information on a molecular level. NMR has been shown to be a powerful tool to noninvasively measure molecular level dynamic information. In this work, we measured nuclear magnetic resonance (NMR) spin lattice relaxation times (T1's) of tetrahydrofuran (THF) in liquid deuterium oxide (D2O) during THF hydrate formation and dissociation. At the same time, we also used magnetic resonance imaging (MRI) to monitor hydrate formation and dissociation patterns. The results showed that solid hydrate significantly influences coexisting fluid structure. Molecular evidence of residual structure was identified. Hydrate formation and dissociation mechanisms were proposed based on the NMR/MRI observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号