首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
By displaying different O‐glycans in a multivalent mode, mucin and mucin‐like glycoproteins are involved in a plethora of protein binding events. The understanding of the roles of the glycans and the identification of potential glycan binding proteins are major challenges. To enable future binding studies of mucin glycan and glycopeptide probes, a method that gives flexible and efficient access to all common mucin core‐glycosylated amino acids was developed. Based on a convergent synthesis strategy starting from a shared early stage intermediate by differentiation in the glycoside acceptor reactivity, a common disaccharide building block allows for the creation of extended glycosylated amino acids carrying the mucin type‐2 cores 1–4 saccharides. Formation of a phenyl‐sulfenyl‐N‐Troc (Troc=trichloroethoxycarbonyl) byproduct during N‐iodosuccinimide‐promoted thioglycoside couplings was further characterized and a new methodology for the removal of the Troc group is described. The obtained glycosylated 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino acid building blocks are incorporated into peptides for multivalent glycan display.  相似文献   

2.
Despite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly). In the present study, O-glycosylation was initiated specifically at Thr10 in naked MUC4 peptide and additional introduction of α-GalNAc proceeded preferentially but randomly at three other Thr residues to afford densely glycosylated MUC4 containing six α-GalNAc residues at Thr1, Ser2, Ser5, Thr6, Thr10, and Thr15. On the contrary, O-glycosylation of naked MUC5AC peptide occurred predominantly at consecutive Thr residues and led to MUC5AC with four α-GalNAc residues at Thr2, Thr3, Thr7, and Thr8. The solution structures determined by NMR spectroscopic studies elicited that the preferential introduction of α-GalNAc at Thr10 of MUC4 stabilizes specifically a β-like extended backbone structure at this area, whereas other synthetic models with a single α-GalNAc residue at Thr1, Thr6, or Thr15 did not exhibit any converged three-dimensional structure at the proximal peptide moiety. Such conformational impact on the underlying peptides was proved to be remarkable in the glycosylation at the consecutive Thr residues of MUC5AC.  相似文献   

3.
The recent understanding of the biological role of glycoproteins has brought about a demand for the highly homogeneous glycopeptides as the functional model for glycoproteins. Thus, much efforts have been made to establish easy and efficient method for glycopeptide synthesis. In this paper, we briefly review the recent advances in the synthesis of O- and N-linked glycopeptide based on the solid-phase method. In O-glycopeptide section, the preparation of glycosylated amino acid units with mucin type and other O-linked carbohydrate chains and their use for solid-phase synthesis are summarized. Other approaches, such as the glycosylation of resin bound peptide are also overviewed. In N-glycopeptide section, the synthesis using glycosylated amino acid units as well as other methods are described.  相似文献   

4.
Glycosylated proteins often show a large variation in their glycosylation pattern, complicating their structural characterization. In this paper, we present a method for the accurate mass determination of intact isomeric glycoproteins based on capillary electrophoresis-electrospray-time of flight-mass spectrometry. Human recombinant erythropoietin has been chosen as a showcase. The approach enables the on-line removal of nonglycosylated proteins, salts, and neutral and negatively charged species. More important, different glycosylation forms are separated both on the base of differences in the number of negatively charged sialic acid residues and the size of the glycans. Thus, 44 glycoforms and in total about 135 isoforms of recombinant human erythropoietin, taking also acetylation into account, could be distinguished for the reference material from the European Pharmacopeia. Distinct glycosylation differences for samples from different suppliers are clearly observed. Based on the accurate mass an overall composition of each single isoform is proposed, perfectly in agreement with data on glycan and glycopeptide analysis. This method is an ideal complement to the established techniques for glycopeptide and glycan analysis, not differentiating branching or linkage isoforms, but leading to an overall composition of the glycoprotein. The presented strategy is expected to improve significantly the ability to characterize and quantify isomeric glycoforms for a large variety of glycoproteins.  相似文献   

5.
Mucins are a class of highly O‐glycosylated proteins found on the surface of cells in epithelial tissues. O‐Glycosylation is crucial for the functionality of mucins and changes therein can have severe consequences for an organism. With that in mind, the elucidation of interactions of carbohydrate binding proteins with mucins, whether in morbidly altered or unaltered conditions, continue to shed light on mechanisms involved in diseases like chronic inflammations and cancer. Despite the known importance of type‐1 and type‐2 elongated mucin cores 1–4 in glycobiology, the corresponding type‐1 structures are much less well studied. Here, the first chemical synthesis of extended mucin type‐1 O‐glycan core 1–3 amino acid structures based on a convergent approach is presented. By utilizing differentiation in acceptor reactivity, shared early stage Tn‐ and T‐acceptor intermediates were elongated with a common type‐1 [β‐D ‐Gal‐1,3‐β‐D ‐GlcNAc] disaccharide, which allows for straightforward preparation of diverse glycosylated amino acids carrying the type‐1 mucin core 1–3 saccharides. The obtained glycosylated 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino acid building blocks were employed in synthesis of type‐1 mucin glycopeptides, which are useful in biological applications.  相似文献   

6.
The polypeptide N-acetyl-alpha-galactosaminyltransferases (ppGalNAcTs, also abbreviated ppGaNTases) initiate mucin-type O-linked glycosylation and therefore play pivotal roles in cell-cell communication and protection of tissues. In order to develop new tools for studying mucin-type O-linked glycosylation, we screened a 1338 member uridine-based library to identify small molecule inhibitors of ppGalNAcTs. Using a high-throughput enzyme-linked lectin assay (ELLA), two inhibitors of murine ppGalNAcT-1 (K(I) approximately 8 microM) were identified that also inhibit several other members of the family. The compounds did not inhibit other mammalian glycosyltransferases or nucleotide sugar utilizing enzymes, suggesting selectivity for the ppGalNAcTs. Treatment of cells with the compounds abrogated mucin-type O-linked glycosylation but not N-linked glycosylation and also induced apoptosis. These uridine analogs represent the first generation of chemical tools to study the functions of mucin-type O-linked glycosylation.  相似文献   

7.
Intact glycopeptide MS analysis to reveal site-specific protein glycosylation is an important frontier of proteomics. However, computational tools for analyzing MS/MS spectra of intact glycopeptides are still limited and not well-integrated into existing workflows. In this work, a new computational tool which combines the spectral library building/searching tool, SpectraST (Lam et al. Nat. Methods2008, 5, 873–875), and the glycopeptide fragmentation prediction tool, MassAnalyzer (Zhang et al. Anal. Chem.2010, 82, 10194–10202) for intact glycopeptide analysis has been developed. Specifically, this tool enables the determination of the glycan structure directly from low-energy collision-induced dissociation (CID) spectra of intact glycopeptides. Given a list of possible glycopeptide sequences as input, a sample-specific spectral library of MassAnalyzer-predicted spectra is built using SpectraST. Glycan identification from CID spectra is achieved by spectral library searching against this library, in which both m/z and intensity information of the possible fragmentation ions are taken into consideration for improved accuracy. We validated our method using a standard glycoprotein, human transferrin, and evaluated its potential to be used in site-specific glycosylation profiling of glycoprotein datasets from LC-MS/MS. In addition, we further applied our method to reveal, for the first time, the site-specific N-glycosylation profile of recombinant human acetylcholinesterase expressed in HEK293 cells. For maximum usability, SpectraST is developed as part of the Trans-Proteomic Pipeline (TPP), a freely available and open-source software suite for MS data analysis.  相似文献   

8.
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T‐cells and acts as a chemoattractant for monocytes. 1 Originally, CCL1 was identified as a 73 amino acid protein having one N‐glycosylation site, 1 and a variant 74 residue non‐glycosylated form, Ser‐CCL1, has also been described. 2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser‐CCL1. Here we report the total chemical syntheses of both N‐glycosylated and non‐glycosylated forms of (Ser‐)CCL1, by convergent native chemical ligation. We used an N‐glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide‐αthioester building block. 3 Chemotaxis assays of these glycoproteins and the corresponding non‐glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser‐)CCL1 using homogeneous N‐glycosylated protein molecules of defined covalent structure.  相似文献   

9.
Mucin glycoproteins are essential components of the mucosal barrier, which protects the host from pathogens. Throughout evolution, bacteria have developed strategies to modulate and penetrate this barrier, and cause virulence by interacting with mucin O-glycans at the epithelial cell-surface. O-fucosylated glycan epitopes on mucins are key ligands of many bacterial lectins. Here, a chemoenzymatic synthesis strategy is described to prepare a library of fucosylated mucin core glycopeptides to enable studies of mucin-interacting and fucose-binding bacterial lectins. Glycan cores with biologically important Lewis and H-antigens were prepared decorating the peptide backbone at different sites and densities. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of glycan core and peptide backbone presentation of these antigens in binding interactions with the P. aeruginosa lectin LecB and the C. difficile toxin A.  相似文献   

10.
Raman and Raman optical activity (ROA) spectroscopy are used to study the solution‐phase structure of the glycan moiety of the protein ribonuclease B (RNase B). Spectral data of the intact glycan moiety of RNase B is obtained by subtracting high‐quality spectral data of RNase A, the non‐glycosylated form of the RNase, from the spectra of the glycoprotein. The remaining difference spectra are compared to spectra generated from Raman and ROA data of the constituent disaccharides of the RNase glycan, achieving convincing spectral overlap. The results show that ROA spectroscopy is able to extract detailed spectral data of the glycan moieties of proteins, provided that the non‐glycosylated isoform is available. Furthermore, good comparison between the full glycan spectrum and the regenerated spectra based on the disaccharide data lends great promise to ROA as a tool for the solution‐phase structural analysis of this structurally elusive class of biomolecules.  相似文献   

11.
Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is both linked to physiological processes and of high relevance in various disease mechanisms. The cellular glycome is increasingly considered to be a therapeutic target. Here we describe a new strategy to compare membrane glycoproteomes, thereby identifying proteins with altered glycan structures and the respective glycosites. The workflow started with an optimized procedure for the digestion of membrane proteins followed by the lectin-based isolation of glycopeptides. Since alterations in the glycan part of a glycopeptide cause mass alterations, analytical size exclusion chromatography was applied to detect these mass shifts. N-glycosidase treatment combined with nanoUPLC-coupled mass spectrometry identified the altered glycoproteins and respective glycosites. The methodology was established using the colon cancer cell line CX1, which was treated with 2-deoxy-glucose—a modulator of N-glycosylation. The described methodology is not restricted to cell culture, as it can also be adapted to tissue samples or body fluids. Altogether, it is a useful module in various experimental settings that target glycan functions.  相似文献   

12.
N-linked glycans are required to maintain appropriate biological functions on proteins. Underglycosylation leads to many diseases in plants and animals; therefore, characterizing the extent of glycosylation on proteins is an important step in understanding, diagnosing, and treating diseases. To determine the glycosylation site occupancy, protein N-glycosidase F (PNGase F) is typically used to detach the glycan from the protein, during which the formerly glycosylated asparagine undergoes deamidation to become an aspartic acid. By comparing the abundance of the resulting peptide containing aspartic acid against the one containing non-glycosylated asparagine, the glycosylation site occupancy can be evaluated. However, this approach can give inaccurate results when spontaneous chemical deamidation of the non-glycosylated asparagine occurs. To overcome this limitation, we developed a new method to measure the glycosylation site occupancy that does not rely on converting glycosylated peptides to their deglycosylated forms. Specifically, the overall protein concentration and the non-glycosylated portion of the protein are quantified simultaneously by using heavy isotope-labeled internal standards coupled with LC-MS analysis, and the extent of site occupancy is accurately determined. The efficacy of the method was demonstrated by quantifying the occupancy of a glycosylation site on bovine fetuin. The developed method is the first work that measures the glycosylation site occupancy without using PNGase F, and it can be done in parallel with glycopeptide analysis because the glycan remains intact throughout the workflow.
Figure
?  相似文献   

13.
Protein glycosylation analysis is important for elucidating protein function and molecular mechanisms in various biological processes. We previously developed a glycan analysis method using a 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix (3-AQ/CHCA LM) and applied it to the quantitative glycan profiling of glycoproteins. However, information concerning glycosylation sites is lost; glycopeptide analysis is therefore required to identify the glycosylation sites in glycoproteins. Human epidermal growth factor receptor 2 (HER2) is a glycoprotein that plays a role in the regulation of cell proliferation, differentiation, and migration. Several reports have described the structure of HER2, but the structures of N-glycans attached to this protein remain to be fully elucidated. In this study, 3-AQ/CHCA LM was applied to tryptic digests of HER2 to reveal its N-glycosylation state and to evaluate the utility of this LM in characterizing glycopeptides. Peptide sequence coverage was considerably improved compared to analysis of HER2 using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid. Most of the peaks observed using only this LM were localized at the inner or outer regions of sample spots. Furthermore, five of the peptide peaks that were enriched within the inner region were confirmed to be glycosylated by MS/MS analysis. Three glycosylation sites were identified and their glycan structures were elucidated. The reduction in sample complexity by on-target separation allowed for higher sequence coverage, resulting in effective detection and characterization of glycopeptides. In conclusion, these results demonstrate that MS-based glycoprotein analysis using 3-AQ/CHCA is an effective method to identify glycosylation sites in proteins and to elucidate the glycan structures of glycoproteins in complex samples.  相似文献   

14.
Prostate specific antigen (PSA) molecules secreted by cancerous and normal prostate cells differ in their N-linked glycan composition, while the peptide backbone appears to be conserved. Antibodies selectively recognizing such differentially glycosylated PSA structures could form a basis for a new diagnostic assay for prostate cancer. Twenty-amino acid PSA fragments carrying di-, tri-, and tetrabranched complex-type glycans were prepared by total synthesis and conjugated to maleimide-modified keyhole limpet hemocyanin (KLH) carrier protein through backbone Cys residues. These glycopeptide/KLH conjugates were then used for antibody generation.  相似文献   

15.
Structural characterization of a glycopeptide is not easily attained through collision‐induced dissociation (CID), due to the extensive fragmentation of glycan moieties and minimal fragmentation of peptide backbones. In this study, we have exploited the potential of electron‐transfer dissociation (ETD) as a complementary approach for peptide fragmentation. Model glycoproteins, including ribonuclease B, fetuin, horseradish peroxidase, and haptoglobin, were used here. In ETD, radical anions transfer an electron to the peptide backbone and induce cleavage of the N–Cα bond. The glycan moiety is retained on the peptide backbone, being largely unaffected by the ETD process. Accordingly, ETD allows not only the identification of the amino acid sequence of a glycopeptide, but also the unambiguous assignment of its glycosylation site. When data acquired from both fragmentation techniques are combined, it is possible to characterize comprehensively the entire glycopeptide. This is being achieved with a mass spectrometer capable of alternating between CID and ETD on‐the‐fly during an LC/MS/MS analysis. This is demonstrated here with several tryptic glycopeptides. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Protein glycosylation is important in many organisms for proper protein folding, signaling, cell adhesion, protein-protein interactions, and immune responses. Thus, effectively determining the extent of glycosylation in glycoprotein therapeutics is crucial. Up to now, characterizing protein glycosylation has been carried out mostly by liquid chromatography mass spectrometry (LC-MS), which requires careful sample processing, e.g., glycan removal or protein digestion and glycopeptide enrichment. Herein, we introduce an NMR-based method to better characterize intact glycoproteins in natural abundance. This non-destructive method relies on exploiting differences in nuclear relaxation to suppress the NMR signals of the protein while maintaining glycan signals. Using RNase B Man5 and RNase B Man9, we establish reference spectra that can be used to determine the different glycoforms present in heterogeneously glycosylated commercial RNase B.  相似文献   

17.
Yufang Zheng  Zongwei Cai 《Talanta》2009,78(2):358-4837
Determination of O-glycosylation sites in glycopeptides was developed by using two model compounds designed from mucin2 tandem repeat motif and erythropoietin. β-Elimination/addition reaction using dimethylamine on glycosylated site through a Michael-type condensation produced efficient deglycosylation with appropriate chemical modification. The use of dimethylamine was efficient to release the O-linked glycan in a reaction time period of 2-6 h at 55 °C. Peptide sequencing was then performed using the liquid chromatography/quadrupole time-of-flight mass spectrometry and MS-MS experiments. Interpretation of fragmentation pathways of the β-elimination/addition products enabled straightforward recognition of glycosylation site. Compared to the fragmentation of corresponding native peptides, mass shift of −18 Da or +27 Da was clearly observed for the two kinds of β-elimination/addition products of the glycosylated threonine. Dimethylamine was found to provide higher efficiency of β-elimination/addition than methylamine and ammonia.  相似文献   

18.
Monoclonal antibodies are typically glycosylated at asparagine residues in the Fc domain, and glycosylation heterogeneity at the Fc sites is well known. This paper presents a method for rapid analysis of glycosylation profile of the therapeutic monoclonal antibody trastuzumab from different production batches using electrospray quadrupole ion-mobility time-of-flight mass spectrometry (ESI-Q-IM-TOF). The global glycosylation profile for each production batch was obtained by a fast LC-MS analysis, and comparisons of the glycoprofiles of trastuzumab from different lots were made based on the deconvoluted intact mass spectra. Furthermore, the heterogeneity at each glycosylation site was characterized at the reduced antibody level and at the isolated glycopeptide level. The glycosylation site and glycan structures were confirmed by performing a time-aligned-parallel fragmentation approach using the unique dual-collision cell design of the instrument and the incorporated ion-mobility separation function. Four different production batches of trastuzumab were analyzed and compared in terms of global glycosylation profiles as well as the heterogeneity at each glycosylation site. The results show that each batch of trastuzumab shares the same types of glycoforms but relative abundance of each glycoforms is varied.  相似文献   

19.
Recombinant pectate lyase from Aspergillus niger was overexpressed in Aspergillus nidulans. The two recombinant proteins produced differed in molecular mass by 1200 Da, which suggested that the larger molecular weight protein was glycosylated. The deduced amino acid sequence was searched for potential N-linked glycosylation sites, and one potential site was identified at residue 64. The proteins were analyzed for their ability to bind various lectins as an assay for the presence of carbohydrates. The proteins were then digested with trypsin to facilitate the isolation of the potential glycosylation site. The resulting digestion products were subsequently analyzed by liquid chromatography/mass spectrometry using in-source collision induced dissociation to detect glycopeptides. Once the glycopeptide had been identified, treatment with an endoglycosidase both verified the location of glycosylation and identified the mass of the glycan. The Complex Carbohydrate Structural Database was searched for possible N-linked structures with the same mass, and the suggested primary sequence was confirmed by an exoglycosidase digestion. The data demonstrated that the larger recombinant protein contained a high mannose N-linked structure (Man(5)GlcNAc(2)) attached to N-64, while this site was not occupied in the smaller protein.  相似文献   

20.
Glycoproteins on epithelial tumor cells often exhibit aberrant glycosylation profiles. The incomplete formation of the glycan side chains resulting from a down-regulated glucosamine transfer and a premature sialylation results in additional peptide epitopes, which become accessible to the immune system in mucin-type glycoproteins. These cancer-specific structure alterations are considered to be a promising basis for selective immunological attack on tumor cells. Among the tumor-associated saccharide antigens, the (2,3)-sialyl-T antigen has been identified as the most abundant glycan, found in several different carcinoma cell lines. According to a linear biomimetic strategy, the (2,3)-sialyl-T antigen was synthesized by a stepwise glycan chain extension of a protected galactosamine-threonine precursor. For the construction of immunostimulating antigens combining both peptide and saccharide motifs, this antigen was incorporated into glycopeptide partial structures from the mucins MUC1 and MUC4 by sequential solid-phase synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号