首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电化学聚合法制备聚中性红膜修饰电极及其应用   总被引:8,自引:0,他引:8  
以正交试验法研究了影响电聚合中性红制备膜修饰电极的具体条件 ,通过较少次数的试验得到了最佳条件 ,并依此制得了聚中性红膜修饰电极。用抗坏血酸对其电化学性能进行了表征 ,该修饰电极对抗坏血酸有较强的催化氧化作用 ,氧化电流与抗坏血酸的浓度在 1 .0× 1 0 - 5mol/L~ 2 .5× 1 0 - 2 mol/L之间呈线性关系 ,相关系数r=0 .9994,氧化电位为 3 3 0mV ,比裸玻碳电极负移 2 3 0mV左右 ,而且电极重现性良好。  相似文献   

2.
The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process. This paper is dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

3.
A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02–450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.  相似文献   

4.
Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biosensors were characterized by studying the influence of pH, applied potential and co-factors. The sol-gel and glutaraldehyde biosensors showed a linear response up to 60 μM and 100 μM, respectively, with detection limits of 2.6 μM and 3.3 μM and sensitivities were 1.7 μA mM−1 and 5.6 μA mM−1. The optimised biosensors showed good stability and good selectivity and have been tested for application for the determination of acetaldehyde in natural samples such as wine.  相似文献   

5.
This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination.  相似文献   

6.
研究了聚中性红薄膜修饰电极对卡马西平的电催化作用,建立一种定量检测卡马西平的电化学分析方法。探讨了修饰电极性能对卡马西平的最佳响应条件,并初步推断了反应机理。在p H=5.03的PBS缓冲底液中,线性范围2.2×10-6mol/L~5.0×10-3mol/L(r=0.9986),检出限为5×10-7mol/L。该方法操作简单、灵敏,可用于实际药品测定。  相似文献   

7.
采用一种简单灵敏的方法开发了在多壁碳纳米管修饰的ZnCrFeO4糊电极(MWCNTs/ZnCrFeO4/CPE)表面测定苄丙酮香豆素的新型传感器.运用循环伏安法、差示脉冲伏安法、计时电流法和电化学阻抗谱考察了该化学修饰电极上苄丙酮香豆素的电化学性能.结果表明,MWCNTs/ZnCrFeO4/CPE电极对苄丙酮香豆素氧化表现出较高的电催化活性,在pH=4时,产生峰值氧化电流约0.97 vs Ag/AgCl参比电极.当苄丙酮香豆素浓度在0.02-920.0 μmol/L范围内,该峰电流与其呈线性关系,检测极限(3σ)为0.003 μmol/L.另外,运用差示脉冲伏安法测定了MWCNTs/ZnCrFeO/CPE电极上苄丙酮香豆素的催化反应速率常数和扩散系数.  相似文献   

8.
We report electrochemical composites of multi-walled carbon nanotubes (MWCNTs) with poly(vinylferrocene) (PVF). The polymeric architecture is prepared by first immobilising the MWCNTs onto a glassy carbon substrate, which acts to introduce electrical current into the composite, with the MWCNTs acting as 'molecular wires'. PVF films of varying surface coverages can be obtained by simply controlling the time a constant potential of +0.7 V (vs. Ag) wire is applied; with the characteristics of the derivatised MWCNTs examined by cyclic voltammetry and scanning electron microscopy.The application of the composite for glucose determination in aqueous solutions was investigated using linear sweep voltammetry, where it was found that the composites supported on glassy carbon substrates are superior to bare glassy carbon electrodes polymerised with PVF, likely due to the comparatively higher number of electrocatalytic centres in the former. This protocol was successfully transferred to prepare a PVF-MWCNT-paste electrode which was applied to glucose detection in diluted laked horse blood. The obtained results show potential and promising practical application for the polymer-derivatised MWCNT-modified electrodes in amperometric sensors for glucose determination.  相似文献   

9.
We report here a fast procedure to modify glassy carbon (GC) electrode using commercially available unsubstituted cobalt phthalocyanine (CoPc) and tetrasulfonated substituted nickel phthalocyanine (NiTSPc) simply adsorbed on oxidized single walled carbon nanotubes SWCNT. The electrocatalytic activity of the resulting SWCNT-MPc nanocomposite materials was evaluated toward the oxidation of two biologically relevant molecules, namely 2-mercaptoethanol (2-ME) and nitric oxide (NO). The obtained electrodes are highly stable under hydrodynamic conditions and the tailored hybrid surfaces allow enhancing electron transfer for the electrocatalytic oxidation of 2-ME and NO.  相似文献   

10.
结合纳米材料的电催化特性和中性红聚合物薄膜的分子识别能力, 以玻碳电极为基体制备了多壁碳管/聚中性红(MWNT/PNR)修饰电极, 并用表面扫描电镜和循环伏安法进行了表征. 实验表明, 该修饰电极对腺嘌呤(A)和鸟嘌呤(G)都表现出了良好的电催化性能. 在最佳条件下, 用示差脉冲伏安法对A和G进行了测定, 其氧化峰电流于A和G的浓度分别在0.01~4 μmol/L和0.01~8 μmol/L范围内呈良好的线性关系, 检测限均为5×10-9 mol/L (S/N=3). 该修饰电极可以用来同时测定DNA中的A和G.  相似文献   

11.
This work describes the modification of a glassy carbon electrode with poly(Toluidine Blue O) (GC/poly-TBO) and single-walled carbon nanotubes (SWCNT) for the electrocatalytic oxidation of nitrite. GC/poly-TBO was prepared by electropolymerization and used as such or after immobilizing SWCNT on the polymeric film to give a composite GC/poly-TBO-SWCNT electrode. The electrochemical and catalytic behavior of both electrodes was studied comparatively. It was observed that the presence of SWCNT contributed to enhance the electrocatalytic response for nitrite oxidation, as measured by amperometry at +0.92 V vs. Ag/AgCl/KClsat and pH 7. The response was linear with respect to the nitrite concentration in the 0.001–4 mM range, with a detection limit of 0.37 μM (based on signal to noise ratio of 3) for GC/poly-TBO-SWCNT. The proposed method was also applied to the determination of nitrite in a wastewater sample and compared to the spectrophotometric method.  相似文献   

12.
Xin  Shuangyang  Li  Yi  Zhao  Hongwei  Bian  Yijie  Li  Wu  Han  Changyu  Dong  Qinglin  Ning  Zhigang  Dong  Lisong 《Journal of Thermal Analysis and Calorimetry》2015,122(1):379-391
Journal of Thermal Analysis and Calorimetry - Two sets of multiwalled carbon nanotubes (MWCNTs)/PLLA nanocomposites and graphene nanosheets (GNSs)/PLLA nanocomposites with various MWCNTs and GNSs...  相似文献   

13.
14.
There is significant potential in improving the mechanical, electrical, and thermal properties of engineering plastics, including poly(ether imide) (PEI), with various nanoinclusions such as multiwalled carbon nanotubes (MWCNTs). However, this potential can only be fully realized through a thorough understanding of the rheological behavior and the thermomechanical histories that the nanocomposites are exposed to during their preparation and the resulting effective properties. In this study, nanocomposites of PEI and MWCNTs were prepared using a solution processing method under different dispersion conditions, and the viscoelastic material functions of the nanocomposites were characterized as functions of concentration of CNTs in the 1–5% by weight range (volume fraction, ? = 0.006–0.03) and temperature. The storage modulus and magnitude of complex viscosity values of the PEI nanosuspensions increased by as much as 3500% and 800%, respectively, at ? = 0.03, along with similar orders of magnitude increases observed or predicted in other viscoelastic material functions. Such increases reflect how nanotube incorporation and network formation can drastically alter the flow and deformation behavior of the PEI/CNT nanosuspensions at processing‐relevant temperatures and deformation rates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

15.
A new voltammetric sensor based on electropolymerization of glycine at glassy carbon electrode (GCE) was developed and applied to determine of pyrazinamide (PZA) by square-wave voltammetry (SWV). The initial cyclic voltammetric studies showed an electrocatalytic activity of poly(Gly)/GCE on redox system of pyrazinamide in 0.1 mol L?1 phosphate buffer solution pH 7.5, with E Pc and E Pa in ?0.85 and ?0.8 V (versus E Ag/AgCl), respectively. Studies at different scan rates suggest that the redox system of pyrazinamide at poly(Gly)/GCE is a process controlled by diffusion in the interval from 10 to 100 mV s?1. Square-wave voltammetry-optimized conditions showed a linear response of PZA concentrations in the range from 0.47 to 6.15 μmol L?1 (R?=?0.998) with a limit of detection (LOD) of 0.035 μmol L?1 and a limit of quantification (LOQ) of 0.12 μmol L?1. The developed SWV-poly(Gly)/GCE method provided a good intra-day (RSD?=?3.75 %) and inter-day repeatability (RSD?=?4.96 %) at 4.06 μmol L?1 PZA (n?=?10). No interference of matrix of real samples was observed in the voltammetric response of PZA, and the method was considered to be highly selective for the compound. In the accuracy test, the recovery was found in the range of 98.2 and 104.0 % for human urine samples and pharmaceutical formulation (tablets). The PZA quantification results in pharmaceutical tablets obtained by the proposed SWV-poly(Gly)/GCE method were comparable to those found by official analytical protocols.  相似文献   

16.
In the present work, the crystalline structures and the melting behaviors of poly(L ‐lactide) (PLLA) obtained after being annealed at different conditions have been investigated through differential scanning calorimetry and wide‐angle X‐ray diffraction, respectively. To improve the crystallization of PLLA, functionalized multiwalled carbon nanotubes (f‐MWCNTs) are introduced into PLLA. Our results show that by prolonging the annealing duration or enhancing the annealing temperature, the degree of crystallinity of PLLA gradually increases. Very important, the addition of f‐MWCNTs promotes the cold‐crystallization of PLLA dramatically even at relatively lower annealing temperature or in shorter annealing duration. Further results show that, whether in neat PLLA or in PLLA/f‐MWCNTs nanocomposite, only α form crystal forms during the annealing process. The glass transition temperature shifts to high temperatures because of the increase of crystallinity. F‐MWCNTs exhibit great heterogeneous nucleation effect for PLLA crystallization through enhancing the nucleation density, leading to homogeneous and tiny spherulites formation in a very short time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 326–339, 2009  相似文献   

17.
Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.  相似文献   

18.
In this study, the surface modification of multi-walled carbon nanotubes (MWCNTs) with acid and oxyfluorination has been examined. Acid treatment of multi-walled CNTs produces many functionalized groups on the surface of MWCNTs, such as C-N stretching and the asymmetric carboxylate group (-COO-). It can be concluded that nitrogen doping of the graphite sheets may take place and a C-N bond identical to the sp3-bonded carbon nitride may form during the acid treatment process. In addition, oxyfluorinated MWCNTs exhibit higher BET specific surface area and mesopore volume than those of the as-received and acid treated MWCNTs. Therefore, acid and oxyfluorination treatments are more effective methods for enhancing the chemical and textural properties of MWCNTs.  相似文献   

19.
Multiwall carbon nanotube (MWNT) was grafted with polyacrylate‐g‐poly (ethylene glycol) via the following two steps. First, hydroxyl groups on the surface of acid‐treated MWNT reacted with linear poly(acryloyl chloride) to generate graft on MWNT; secondly, the remaining acryloyl chloride groups were subjected to esterification with poly(ethylene glycol) leading the grafted chains on the surface of MWNTs. Thus obtained grafted MWNT was characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis showed that the weight fraction of grafted polymers amounted to 80% of the modified MWNT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6880–6887, 2006  相似文献   

20.
Multiwalled carbon nanotubes (MWNT) were functionalized with poly(L-lactic acid) (PLLA) with different molecular weights using a "grafting to" technique. The oxidized MWNT (MWNT-COOH) were converted to the acyl-chloride-functionalized MWNT (MWNT-COCl) by treating them with thionyl chloride (SOCl2) and reacting them with PLLA to prepare the MWNT-g-PLLA. FTIR and Raman spectroscopy revealed that the PLLA was covalently attached to the MWNT, and the weight gain due to the functionalization was determined by thermogravimetric analyses (TGA). The Raman signals of the MWNT were greatly weakened as a result of the PLLA grafting. The morphology of the grafted PLLA was examined by using SEM and TEM. The amount of grafted PLLA depended on the molecular weight of the PLLA. The PLLA coated on the MWNT became thicker and more uniform with increasing PLLA molecular weight from 1000 to 3000. However, the amount of grafted PLLA became lower when the molecular weight of PLLA was further increased to 11,000 and 15,000, and the PLLA attached to the MWNT showed a squid leglike morphology forming blobs and leaving much of the MWNT surface bare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号