首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
纳米有序体系的模板合成及其应用   总被引:10,自引:0,他引:10  
包建春  徐正 《无机化学学报》2002,18(10):965-975
评述了以含有高密度的纳米柱形孔道的Al2O3膜和有机聚合物膜为模板,制备金属、合金、氧化物、半导体和聚合物及其复合组份的一维纳米结构有序阵列的几种方法、纳米结构的性质和应用的研究进展。可用于模板合成的方法有电化学沉积法、化学镀、化学聚合、化学气相沉积和溶胶-凝胶法等。取决于孔壁和所填充材料的化学性质,所得阵列既可以是由纳米管也可以是由纳米线组成。这样的有序阵列在光学、磁学、催化及电化学等领域有着重要的应用前景。制备新型复合纳米结构有序阵列、开展纳米器件的研制是模板合成研究领域的重要方向。  相似文献   

2.
Highly ordered antidot arrays of permalloy have been prepared by sputtering onto different nanoporous alumina membranes (NAMs) and characterized by Rutherford backscattering spectrometry (RBS), SEM and Vibrating sample magnetometry (VSM). RBS spectrometry combined with SEM image analysis provides information on the in‐depth composition and porosity of the different magnetic antidot nanostructures. The coercivity increases in the antidot nanostructures as compared with that of its parent continuous film. The saturation magnetization values of the antidot nanostructures are observed to increase with increasing pore size. Our results suggest an enhanced magnetization at the Fe20Ni80/Al2O3 interface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
NiTe2 nanoflakes and their self-assembled nanoflake arrays (one-dimensional nanostructures) have been prepared by a single-step hydrothermal method using Ni(CH3COO)2·4H2O, Na2TeO3, glucose, and cetyltrimethylammonium bromide (CTAB). CTAB was found to strongly influence the structure and morphology of the resultant NiTe2. Morphological transformations from nanoflakes to self-assembled nanoflake arrays and then to solid smooth nanowires were observed as CTAB concentration was increased in the growth solution. Photoluminescence of the NiTe2 self-assembled nanoflake arrays was investigated for the first time and the formation mechanism of the NiTe2 nanostructures is also discussed.  相似文献   

4.
Large-area ordered Ni nanowire arrays with different diameters have been fabricated by the direct current electrodeposition into the holes of porous anodic alumina membrane. The crystal structure and micrograph of nanowire arrays are characterized by X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the growth orientation of Ni nanowires turns from [110] to [111] direction with increasing diameters of nanowires. The mechanism of the growth was discussed in terms of interface energy minimum principle. The size-dependent orientation of Ni nanowire arrays has the important significance for the design and control of nanostructures.  相似文献   

5.
An approach is described for controlling the spatial organization of mammalian cells using ferromagnetic nanowires in conjunction with patterned micromagnet arrays. The nanowires are fabricated by electrodeposition in nanoporous templates, which allows for precise control of their size and magnetic properties. The high aspect ratio and large remanent magnetization of the nanowires enable suspensions of cells bound to Ni nanowires to be controlled with low magnetic fields. This was used to produce one- and two-dimensional field-tuned patterning of suspended 3T3 mouse fibroblasts. Self-assembled one-dimensional chains of cells were obtained through manipulation of the wires' dipolar interactions. Ordered patterns of individual cells in two dimensions were formed through trapping onto magnetic microarrays of ellipsoidal permalloy micromagnets. Cell chains were formed on the arrays by varying the spacing between the micromagnets or the strength of fluid flow over the arrays. The positioning of cells on the array was further controlled by varying the direction of an external magnetic field. These results demonstrate the possibility of using magnetic nanowires to organize cells.  相似文献   

6.
Hierarchical titanate nanostructures were hydrothermally synthesized in concentrated base solutions using commercial titania powders as starting materials. By varying the base concentration, nanowire arrays, flowers of nanosheets and nanotubes, and urchin‐like nanostructures of nanowires and nanotubes were sequentially fabricated. If the NaOH concentration was higher than 6 M , hydrated Na2Ti6O13 nanowire arrays, with nanowire diameters of 20–90 nm and an aspect ratio of 1100–5000, were produced at suitable reaction temperatures over a large area. In 10 M KOH solutions, aligned nanowires with a diameter of 30 nm and a lenght of 80 μm formed. In 4 M NaOH solutions, micrometer‐sized flowers of nanotubes and nanosheets formed. Reactions in 2 M NaOH solutions produced urchin‐like materials with a size of ca. 10 μm that were composed of nanotubes and nanowires. The adsorption behavior of the urchin‐like materials resembled macroporous materials with micropores. Since both base concentration and reaction temperature affected the reaction rate, the formation of various titanate nanostructures was proposed as a growth speed controlled process.  相似文献   

7.
An all aqueous sol gel route has been demonstrated for the synthesis of titania multifunctional ultrafiltration membrane on porous alumina substrate. Doping with lanthana was used to increase the thermal stability of anatase phase. This resulted in a nanoporous membrane with considerable percentage of anatase phase even after consolidation at 800°C. The highly homogeneous membranes with a thickness of ~4–5 μm could be observed in SEM. The presence of anatase phase ensured higher photoactivity for the doped membrane compared to the undoped one. The performance of the membrane was tested based on molecular weight cut off and a very high (>90%) filtration efficiency was observed on Bovine Serum Albumin of molecular weight 66 kD. Rejection of 11 nm sized particles points to the uniform nanoporous nature of these highly efficient membranes.  相似文献   

8.

Porous anodic alumina membranes with Y-branched and double-branched nanopores were fabricated by the stepwise reduction of anodizing potential during the second step of anodization carried out in 0.3 M oxalic acid. The process of nanoporous layer formation and influence of anodizing parameters on structural features of as-obtained anodic aluminum oxide (AAO) membranes were discussed in detail. The pore rearrangement process occurring after the potential decrease was investigated on the basis of the current density vs. time curves, and results were correlated with the field-emission scanning electron microscope images of the pore bottoms taken after different anodizing durations. It was found that the reorganization of nanopores begins after 600 and 500 s from the time of the potential reduction to 42 and 30 V and the process seems to be completed after about 900 and 800 s, respectively. The through-hole AAO membranes were used as templates for the fabrication of gold and polystyrene nanowires via electrochemical deposition and simple immersing in the polymer solution, respectively. The arrays of hierarchically branched nanowires were synthesized, and the dimensions of nanowires were consistent with the shape and structure of used AAO templates.

  相似文献   

9.
吡啶在几种金属纳米线阵列上的表面增强喇曼光谱   总被引:2,自引:0,他引:2  
近20多年来利用表面增强喇曼光谱(SERS)的研究还仅限于Ag,Au,Cu这三种具有强SERS效应的金属,最近,田中群等利用合适的表面处理方法和共焦曼光谱技术成功地获得了许多无机离子和有机小分子吸附在一系列的过渡金属(如Pt,Ni,Fe,Pd,Rh,Co,Ru等)上的SERS光谱,拓宽了SERS的应用范围,但这些表面处理方法对基底进行处理时存在着较大的随机性,从而导致对所得SERS信号的解释困难。近年来通过自组装膜、模板合成等技术可得比较有序具有强SERS效应的或表面,例如Nie等最近发现尺寸分布狭窄的Ag溶胶粒子(约80-100nm)能诱导出巨大的SERS增强;Freeman和C tffumj m jf rbutb uqf At A 体微粒组装在聚合物基底上,制得高活性的SERS基底,以上工作都表明制备有序纳米级金属颗粒表面将推动SERS的应用和机理研究,迄今,3半导体纳米线阵列上的喇曼光谱已有报道,而利用金属纳米线阵列作为SERS基底除半于样模合成法制备的Ag纳米线阵列上的SERS之外,尚未见其它相关报道,本文主要研究样模合成法制备金属纳米线的过程,并以此为基底研究吡啶吸附的SERS光谱。  相似文献   

10.
An Au thin film, which was sputter-deposited on an Al substrate, was potentiostatically anodized in oxalic acid. The Au film was first anodized and a spongelike nanoporous film grew down to the interface between Au and Al. Then, the Al was anodized and a very thin and fine nanoporous alumina film was formed underneath the nanoporous Au. Under the same anodization conditions, the current density for Al was ~ 40 μA cm 2, less than 1% of that for Au (~ 30 mA cm 2). The growth rates of the nanoporous films were ~ 0.7 nm/min for Al and 26 nm/min for Au, indicating that the growth rate of nanoporous alumina was less than 3% of that of nanoporous Au. Al is suitable as the substrate for preparing nanoporous Au films because the electrochemical reactions of both the electrolyte and the substrate are significantly suppressed when the nanopores penetrate Au and the electrolyte reaches the substrate.  相似文献   

11.
糖葫芦状二氧化钛纳米线阵列的制备及其光催化性能   总被引:1,自引:0,他引:1  
 采用溶胶-电泳技术,在多孔阳极氧化铝(PAA)模板的有序孔洞中制备了高度取向的糖葫芦状TiO2纳米线阵列光催化剂,通过扫描电镜(SEM)和X射线衍射对样品进行了表征. 结果表明, TiO2纳米线为锐钛矿晶型,纳米线直径与PAA模板的孔径一致,且分布均匀. 纳米线取向性极好,每根纳米线都具有周期性凹凸,形似糖葫芦,因此命名为糖葫芦状TiO2纳米线阵列. 以甲基橙的降解反应评价了光催化剂的活性,与相同条件下制备的TiO2/玻璃膜相比, TiO2纳米线阵列在光照1 h时对甲基橙的降解率达到93.6%, 比前者提高了40.2%, 具有很好的光催化活性.  相似文献   

12.
Immersion of nanoporous alumina membranes into saturated solutions of hexaphenylsilole with subsequent solvent evaporation affords aligned organic nanowires. The luminescent properties of the hexaphenylsilole nanowires can be manipulated by varying their morphologies, which were controlled by changing the channel sizes of the alumina templates.  相似文献   

13.
The magnetic NiFex nanowires were prepared via template-guided electrodeposition. Anodized nanoporous aluminum was used as a template. The pore density and dimensions of alumina templates can be controlled by anodization conditions. Magnetic nanorods (or nanowires) with various aspect ratios were prepared by controlling the electrodeposition time. SEM and TEM micrographs revealed the wire and rod shape morphologies with 50 nm in diameter and 1.5 ~ 10 μm in length. Elemental analysis and ESCA studies suggested that NiFe3 magnetic alloy was formed. The X-ray diffraction pattern indicates that all the nanowires are stabilized in a BCC structure with a [1 1 0] texture oriented along the long axis of the nanowires. The magnetic measurement showed no hysteresis loops for the whole aspect ratios of the nanowires. Nevertheless, the magnetization is more temperature sensitive for nanowires with lower aspect ratio. This is caused by the fact that the easy magnetization axis is always parallel to the long axis of the nanowires.  相似文献   

14.
This communication describes a relatively new and simple method for the preparation of AgI nanowires using nanoporous alumina membrane templates which can be easily extended to prepare nanowires of many other materials.  相似文献   

15.
Novel Au/Pt and Au/Pt(3)Ni nanostructures consisting of Pt and Pt(3)Ni alloy nanodendrites grown on Au nanowires were synthesized, which exhibited high electrocatalytic activity and durability toward oxygen reduction when used as self-supported catalysts.  相似文献   

16.
Ordered NiO nanowire arrays embedded in anodic alumina membranes have been prepared by using an electrochemical deposition method. After annealing at 300 °C, the NiO nanowire arrays were characterized using SEM, TEM, SAED, and XRD. SEM and TEM observations reveal that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these NiO nanowires crystallize with a polycrystalline structure. The optical absorption band gap of NiO nanowire arrays is 3.74 eV, and no obvious blue shift or red shift with respect of that of the bulk NiO can be observed.  相似文献   

17.
Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials.  相似文献   

18.
Metal nanowires (nanorods) have novel properties and potential applications in a wide field[1]. Many two-dimensional nanowire arrays of semiconductors and metals with different diameter and length have been made using template synthesis method[2]. The nanorod arrays of various metals (e.g., Cu, Ag,Au, Ni and Co) with different diameters from about 15 nm to 130 nm were fabricated by electrodeposition of the metals into the highly ordered nanochannel arrays in alumina film followed by partial removal of the film in phosphoric acid or sodium hydroxide. In the present work, surface-enhanced Raman spectroscopy (SERS), AFM and electrochemical methods have been used to characterize the metal nanorod (nanowire) arrays. Tapping mode AFM and SERS were performed on Nanoscope Ⅲa (Digital Instruments) and on confocal Raman microscopy (LabRam I,Dilor) respectively.  相似文献   

19.
Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10-100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article include 2D arrays of colloidal Au nanoparticles with size-dependent plasmonic responses, and sub-100 nm Co nanoparticle rings with chiral magnetic states. These nanoparticle assemblies may be further developed for applications in chemical sensing based on surface-enhanced Raman scattering (SERS) and as binary elements for nonvolatile memory, respectively.  相似文献   

20.
We report a straightforward method for the fabrication of DNA-templated nickel nanostructures on surfaces. These nickel nanomaterials have potential to be applied as nanowires, as templated catalyst lines, as nanoscale magnetic domains, or in directed protein localization. Indeed, we show here that histidine-tagged phosducin-like protein (His-PhLP) binds with high selectivity to both Ni2+-treated surface DNA and DNA-templated nickel metal to create linear protein assemblies on surfaces. The association of His-PhLP with DNA-templated nickel ions or metal is reversible under appropriate rinsing conditions. Nanoscale DNA-templated protein assemblies might be useful in the construction of high-density protein lines for proteomic analysis, for example. Importantly, these nanofabrication procedures are not limited to linear DNA and can be applied readily to other self-assembled DNA topologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号