首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

2.
The determination of a group of eighteen pollutants in waters, including polycyclic aromatic hydrocarbons and substituted phenols, is conducted in direct-immersion solid-phase microextraction (SPME) using the polymeric ionic liquid (PIL) poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide as a novel coating material. The performance of the PIL fiber coating in the developed IL-SPME-gas chromatography (GC)–mass spectrometry (MS) method is characterized by average relative recoveries of 92.5% for deionized waters and 90.8% for well waters, average precision values (as relative standard deviations, RSD%) of 11% for deionized waters and 12% for well waters, using a spiked level of 5 ng mL−1. The detection limits oscillate from 0.005 ng mL−1 for fluoranthene to 4.4 ng mL−1 for 4-chloro-3-methylphenol, when using an extraction time of 60 min with 20 mL of aqueous sample. The extraction capabilities of the PIL fiber have been compared with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, PDMS 100 μm and polyacrylate (PA) 85 μm. The PIL fiber is superior to the PDMS 30 μm for all analytes studied. A qualitative study was also carried out to compare among the nature of the coating materials by normalizing the coating thickness. The PIL material was shown to be more efficient than the PDMS material for all analytes studied. The PIL coating was also adequate for nonpolar analytes whereas the PA material was more sensitive for polar compounds.  相似文献   

3.
A polymeric ionic liquid (PIL) poly(1-vinyl-3-hexylimidazolium chloride) (poly(ViHIm+Cl)) was designed as a coating material for solid phase microextraction (SPME) to extract polar compounds including volatile fatty acids (VFAs) and alcohols. The extracted analytes were analyzed by using gas chromatography (GC) coupled with flame ionization detection (FID). Extraction parameters of the HS–SPME–GC–FID method, such as ionic strength, extraction temperature, pH and extraction time were optimized. Calibration studies were carried out under the optimized conditions to further evaluate the performance of the PIL-based SPME coating. For comparison purposes, the PIL poly(1-vinyl-3-hexylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(ViHIm+NTf2)) was also used as the SPME coating to extract the same analytes. The results showed that the poly(ViHIm+Cl) PIL coating had higher selectivity towards more polar analytes due to the presence of the Cl anion which provides higher hydrogen bond basicity than the NTf2 anion. The limits of detection (LODs) determined by the designed poly(ViHIm+Cl) PIL coating ranged from 0.02 μg L−1 for octanoic acid and decanoic acid and 7.5 μg L−1 for 2-nitrophenol, with precision values (as relative standard deviation) lower than 14%. The observed performance of the poly(ViHIm+Cl) PIL coating was comparable to previously reported work in which commercial or novel materials were used as SPME coatings. The selectivity of the developed PIL coatings was also evaluated using heptane as the matrix solvent. This work demonstrates that the selectivity of PIL-based SPME coatings can be simply tuned by incorporating different counteranions to the sorbent coating.  相似文献   

4.
The CO2 selectivity of two polymeric task-specific ionic liquid sorbent coatings, poly(1-vinyl-3-hexylimidazolium) bis[(trifluoromethyl)sulfonyl]imide [poly(VHIM-NTf2)] and poly(1-vinyl-3-hexylimidazolium) taurate [poly(VHIM-taurate)], was examined using solid-phase microextraction (SPME) for the determination of CO2 in simulated flue gas. For comparison purposes, a commercial SPME fiber, Carboxen™-PDMS, was also studied. A study into the effect of humidity revealed that the poly(VHIM-taurate) fiber exhibited enhanced resistance to water, presumably due to the unique mechanism of CO2 capture. The effect of temperature on the performance of the PIL-based and Carboxen fibers was examined by generating calibration curves under various temperatures. The sensitivity, linearity, and linear range of the three fibers were evaluated. The extraction of CH4 and N2 was performed and the selectivities of the PIL-based and Carboxen fibers were compared. The poly(VHIM-NTf2) fiber was found to possess superior CO2/CH4 and CO2/N2 selectivities compared to the Carboxen fiber, despite the smaller film thicknesses of the PIL-based fibers. A scanning electron microscopy study suggests that the amine group of the poly(VHIM-taurate) is capable of selectively reacting with CO2 but not CH4 or N2, resulting in a significant surface morphology change of the sorbent coating.  相似文献   

5.
A new ionic liquid (IL) based solid-phase microextraction (SPME) fiber was investigated and used for headspace (HS) extraction of methyl tert-butyl ether (MTBE) in a gasoline sample. Using the new IL coated HS-SPME fiber with the combination of gas chromatography-flame ionization detection (GC-FID); sub-to-low μg L−1 concentrations of MTBE were detected. Four different ILs including 1-butyl-3-methylimidazolium tetraflouroborate ([C4C1IM] [BF4]), 1-octyl-3-methylimidazolium tetraflouroborate ([C8C1IM] [BF4]), 1-octyl-3-methylimidazolium hexaflourophosphate ([C8C1IM] [PF6]) and 1-ethyl-3-methylimidazolium ethylsulphate ([C2C1IM] [ETSO4]) were synthesized and examined for extraction, preconcentration and determination of MTBE. It was observed that [C8C1IM] [BF4] showed the highest extraction efficiency and possessed the best extractability for MTBE. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings. The calibration graph was linear in a concentration range of 1-120 μg L−1 (R2 > 0.994) with the detection limit of 0.09 μg L−1 level. The new IL-coated fiber was applied successfully for the determination of MTBE in a gasoline sample with good recoveries between 90 and 95%.  相似文献   

6.
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30% w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.  相似文献   

7.
A method for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in milk and related products based on direct immersion-solid phase microextraction (DI-SPME) followed by gas chromatography-mass spectrometry detection (GC-MS) has been developed. The influence of various parameters on PAH extraction efficiency was carefully monitored. Good performance (recovery, precision and quantitation limits) was attained when a PDMS/DVB fiber was immersed in the sample for 60 min at 55 °C. Detection limits ranged from 0.003 to 1.5 μg L−1 at a signal-to-noise ratio of 3, depending on the compound and the sample. The proposed method was successfully applied to infant formulas, milk and related products and the presence of both fluoranthene and pyrene in two samples was confirmed.  相似文献   

8.
Four polymeric ionic liquids based on two different cations, poly(1‐vinyl‐3‐hexylimidazolium) and poly(1‐vinyl‐3‐hexadecylimidazolium), combined with two different anions, bis[(trifluoromethyl)sulfonyl]imide (NTf) and chloride (Cl?), were combined in various weight percentages and used as sorbent coatings for solid‐phase microextraction gas chromatography (SPME‐GC). The selectivity of the fiber coatings for 12 test analytes was examined. The extraction efficiency of n‐alcohols increased with an increase in the weight percentage of chloride ion in the sorbent coating. The ability to tune the interactions between the coating material and the analytes was exploited and resulted in distinct changes in the limits of detection for hydrogen‐bonding analytes with varying chloride ion content in the sorbent coating.  相似文献   

9.
A novel microextraction method making use of commercial polymer fiber as sorbent, coupled with high-performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) in water has been developed. In this technique, the extraction device was simply a length (8 cm) of a strand of commercial polymer fiber, Kevlar (each strand consisted of 1000 filaments, each of diameter ca. 9.23 μm), that was allowed to tumble freely in the aqueous sample solution during extraction. The extracted analytes were desorbed ultrasonically before the extract was injected into HPLC system for analysis. Extraction parameters such as extraction time, desorption time, type of desorption solvent and sample volume were optimized. Each fiber could be used for up to 50 extractions and the method showed good precision, reproducibility and linear response within a concentration range 0.05–5.00 μg L−1 with correlation coefficients of up to 0.9998. Limits of detection between 0.4 and 4.4 ng L−1 for seven PAHs could be achieved. The relative standard deviations (n = 3) of this technique were between 2.9% and 12.1%.  相似文献   

10.
A novel crown ether functionalized ionic liquid (IL), 1-allyl-3-(6'-oxo-benzo-15-crown-5 hexyl) imidazolium hexafluorophosphate was synthesized and used as selective stationary phase to prepare task-specific IL-based solid phase microextraction (SPME) fibers by sol-gel method and free radical cross-linking technology. The underlying mechanism of the sol-gel reaction was proposed and the successful chemical bonding of the crown ether functionalized IL to the formed hybrid organic-inorganic copolymer coating was confirmed by FT-IR spectroscopy. The performance of this in situ created crown ether functionalized IL-based SPME fibers, was investigated in detail. The coating has porous surface structure, stable performance in high temperature (to 340 °C) and in different solutions (water, organic solvent, acid and alkali), and good coating preparation reproducibility. In contrast to the sol-gel derived 1-allyl-3-methyl imidazolium hexafluorophosphate-based coating prepared in our previous work with the identical procedure, the extraction performance of this newly developed sol-gel crown ether functionalized IL-based coating was superior for alcohols, phthalate esters, phenolic environmental estrogens, fatty acids and aromatic amines due to the introduction of benzo-15-crown-5 functional group in IL structure. Moreover, it was shown to provide higher or comparable extraction efficiencies for most analytes studied than did the commercial PDMS, PDMS/DVB and PA fibers.  相似文献   

11.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

12.
Feng J  Sun M  Xu L  Li J  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(43):7758-7764
Polymeric 1-vinyl-3-octylimidazolium hexafluorophosphate was synthesized in situ on stainless steel wire by surface radical chain-transfer polymerization and used as sensitive coatings in solid-phase microextraction. The outer surface of the stainless steel wire was firstly coated with microstructured silver layer via silver mirror reaction and then functionalized with self-assembled monolayers of 1,8-octanedithiol, which acted as chain transfer agent in the polymerization. Coupled to gas chromatography, extraction performance of the fiber was studied with both headspace and direct-immersion modes using benzene, toluene, ethylbenzene and xylenes (BTEX), phenols and polycyclic aromatic hydrocarbon (PAHs) as model analytes. In combination with the microstructured silver layer, the PIL-coated fiber exhibited high extraction efficiency. Linear ranges for BTEX with headspace mode were in the range of 0.2-1000 μg L(-1) for benzene, and 0.1-1000 μg L(-1) for toluene, ethylbenzene and xylenes. Limits of detection (LODs) were from 0.02 to 0.05 μg L(-1). Wide linear ranges of direct-immersion mode for the extraction of several phenols and PAHs were also obtained with correlation coefficients (R) from 0.9943 to 0.9997. The proposed fiber showed good durability with long lifetime. RSDs of 56 times extraction were still in an acceptable range, from 8.85 to 22.8%.  相似文献   

13.
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L−1 NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L−1, relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L−1 (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion.  相似文献   

14.
A novel ionic liquid (IL) bonded fused-sil-ica fiber for headspace solid-phase microextraction (HS-SPME)/gas chromatography-flame ionization detection (GC-FID) of methyl tert-butyl ether (MTBE) in a gasoline sample was prepared and used. The new proposed chemically bonded fiber has better thermal stability and durability than its corresponding physically coated fiber. Another advantage is that no spacer was used for the purpose of bonding the IL to the surface of the fused-silica. The latter advantage makes the preparation of these fibers easier with lower cost than those prepared using sol–gel method. The ionic liquid 1-methyl-3-(3-trimethoxysilyl propyl) imidazolium bis(trifluoromethylsulfonyl) imide was synthesized and cross linked to the surface of the fused-silica fiber. Then, the chemically IL-modified fibers were applied to the headspace extraction of MTBE. The chemically IL-modified fibers showed improved thermal stability at temperatures up to 220 °C relative to the physically IL-modified fibers (180 °C). The chemically bonded IL film on the surface of the fused-silica fiber was durable over 16 headspace extractions without any significant loss of the IL film. The calibration graph was linear in a concentration range of 2–240 μg L−1 (R2 = 0.996) with the detection limit of 0.1 μg L−1 level. The reproducibility (RSD %, n = 6) of the new IL bonded fused-silica fiber (8.9%) was better than the physically coated fiber (12%) suggesting that the proposed chemically IL-modified fiber is more robust than the physically IL-modified fiber. The optimum extraction conditions were the followings: 40 °C extraction temperature, 12 min extraction time, 30 s desorption time and sample agitation at 200 rpm.  相似文献   

15.
This paper describes a headspace solid-phase microextraction (HS-SPME) procedure coupled to gas chromatography with mass spectrometric detection (GC–MS) for the determination of eight PAHs in aquatic species. The influence of various parameters on the PAH extraction efficiency was carefully examined. At 75 °C and for an extraction time of 60 min, a polydimethylsiloxane–divinylbenzene (PDMS/DVB) fiber coating was found to be most suitable. Under the optimized conditions, detection limits ranged from 8 to 450 pg g−1, depending on the compound and the sample matrix. The repeatability varied between 7 and 15% (RSD). Accuracy was tested using the NIST SRM 1974b reference material. The method was successfully applied to different samples, and the studied PAHs were detected in several of the samples. Figure Headspace SPME sampling followed by GC–MS facilitates routine monitoring of PAHs in aquatic species  相似文献   

16.
A novel poly(3,4-ethylenedioxythiophene)-ionic liquid (i.e., 1-hydroxyethyl-3-methyl imidazolium-bis[(trifluoromethyl)sulfonyl]imide) composite film was electrodeposited on a Pt wire for headspace solid-phase microextraction. The film showed nodular structure and had large specific surface. In addition, it displayed high thermal stability (up to 300 °C) and durable property (could be used for more than 200 times). Coupled with gas chromatography-flame ionization detection, the resulting fiber was applied to the headspace solid-phase microextraction and determination of several alcohols (i.e., linalool, nonanol, terpineol, geraniol, decanol and dodecanol). It presented higher extraction capability in comparison with the poly(3,4-ethylenedioxythiophene) and commercial polydimethylsiloxane/divinylbenzene fiber. Under the optimized conditions, the linear ranges exceeded three magnitudes with correlation coefficients above 0.9952 and the low limits of detection were 34.2–81.3 ng L−1. For different alcohols the repeatabilities (defined as RSD) were <5.8% and <7.8% for single fiber (n = 5) and fiber-to-fiber (n = 4), respectively. The proposed method was applied to the determination of these alcohols in real samples with acceptable recoveries from 81.1% to 106.6%.  相似文献   

17.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

18.
A simple procedure for the determination of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), ethyl butyl ether (EBE), tert-amyl methyl ether (TAME), benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using headspace (HS) solid-phase microextraction (HS-SPME) was developed. The analysis was carried out by gas chromatography (GC) equipped with flame ionization detector (FID) and 100% dimethylpolysiloxane fused capillary column. A 2 Plackett-Burman design for screening and a central composite design (CCD) for optimizing the significant variables were applied. Fiber type, extraction temperature, sodium chloride concentration, and headspace volume were the significant variables. A 65 microm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 10 degrees C, 300 g/l, and 20 ml of headspace (in 40 ml vial) were respectively chosen for the best extraction response. An extraction time of 10 min was enough to extract the ethers and BTEX. The relative standard deviation (R.S.D.) for the procedure varied from 2.6 (benzene) to 8.5% (ethylbenzene). The method detection limits (MDLs) found were from 0.02 (toluene, ethylbenzene, and xylenes) to 1.1 microg/l (MTBE). The optimized method was applied to the analysis of the rivers, marinas and fishing harbors surface waters from Gipuzkoa (North Spain). Three sampling were done in 1 year from June 2002 to June 2003. Toluene was the most detected analyte (in 90% of the samples analyzed), with an average concentration of 0.56 microg/l. MTBE was the only dialkyl ether detected (in 15% of the samples) showing two high levels over 400 microg/l that were related to accidental fuel spill.  相似文献   

19.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

20.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号