首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reaction between [VO(acac)2] and H2L (H2L are the hydrazones H2sal-nah I or H2sal-fah II; sal = salicylaldehyde, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) in methanol leads to the formation of oxovanadium(IV) complexes [VOL.H2O](H2L = I: 1, H2L = II: 4). Aerial oxidation of the methanolic solutions of 1 and 4 yields the dinuclear oxo-bridged monooxovanadium(V) complexes [{VOL}2mu-O](H2L = I: 2, H2L = II: 5). These dinuclear complexes slowly convert, in excess methanol, to [VO(OMe)(MeOH)L](H(2)L = I: 9, H(2)L = II: 10), the crystal and molecular structures of which have been determined, confirming the ONO binding mode of the dianionic ligands in their enolate form. Reaction of aqueous K[VO3] with the ligands at pH ca. 7.5 results in the formation of [K(H2O)][VO2L](H2L = I: 3, H2L = II: 6). Treatment of 3 and 6 with H2O2 yields (unstable) oxoperoxovanadium(v) complexes K[VO(O2)L], the formation of which has been monitored spectrophotometrically. Acidification of methanolic solutions of 3 and 6 with HCl affords oxohydroxo complexes, while the neutral complexes [VO2(Hsal-nah)] 7 and [VO2(Hsal-fah)] 8 were isolated on treatment of aqueous solutions of 3 and 6 with HClO4. These complexes slowly transform into 9 and 10 in methanol, as confirmed by 1H, 13C and 51V NMR. The anionic complexes 3 and 6 catalyse the oxidative bromination of salicylaldehyde in water in the presence of H2O2/KBr to 5-bromosalicylaldehyde and 3,5-dibromosalicylaldehyde, a reaction similar to that exhibited by vanadate-dependent haloperoxidases. They are also catalytically active for the oxidation of benzene to phenol and phenol to catechol and p-hydroquinone.  相似文献   

2.
Reaction between [VO(acac)(2)] and the ONN donor Schiff base Hsal-ambmz (I) (Hsal-ambmz = Schiff base obtained by the condensation of salicylaldehyde and 2-aminomethylbenzimidazole) resulted in the formation of the complexes [V(IV)O(acac)(sal-ambmz)] (1), [V(V)O(2)(acac-ambmz)] (2) (Hacac-ambmz = Schiff base derived from acetylacetone and 2-aminomethylbenzimidazole), and the known complex [V(IV)O(sal-phen)] (3) (H(2)sal-phen = Schiff base derived from salicylaldehyde and o-phenylenediamine). Similarly, [V(IV)O(acac)(sal-aebmz)] (7) has been isolated from the reaction with Hsal-aebmz (II) (Hsal-aebmz derived from salicylaldehyde and 2-aminoethylbenzimidazole). Aerial oxidation of the methanolic solutions/suspensions of 1 and 7 yielded the dioxovanadium(V) complexes [V(V)O(2)(sal-ambmz)] (4) and [V(V)O(2)(sal-aebmz)] (8), respectively. Reaction of VOSO(4) with II gave [{V(IV)O(sal-aebmz)}(2)SO(4)] (9) and [V(IV)O(sal-aebmz)(2)] (10), along with 3 and 8. Under similar reaction conditions, I gave only [{V(IV)O(sal-ambmz)}(2)SO(4)] (5) and 3 as major products. Treatment of 1 and 7 with benzohydroxamic acid (Hbha) yielded the mixed-chelate complexes [V(V)O(bha)(sal-ambmz)] (6) and [V(V)O(bha)(sal-aebmz)] (11). The crystal and molecular structures of 2, 3.1/2DMF, 7.1/4H(2)O, 8, 9.2H(2)O, 10, and 11 have been determined, confirming the ONN binding mode of the ligands. In complex 10, one of the ligands is coordinated through the azomethine nitrogen and phenolate oxygen only, leaving the benzimidazole group free. In the dinuclear complex 9, bridging functions are the phenolate oxygens from both of the ligands and two oxygens of the sulfato group. The unstable oxoperoxovanadium(V) complex [V(V)O(O(2))(sal-aebmz)] (12) has been prepared by treatment of 7 with aqueous H(2)O(2). Acidification of methanolic solutions of 7 and 10 lead to (reversible) protonation of the bemzimidazole, while 8 was converted to an oxo-hydroxo species. Complexes 2, 4, and 8 catalyze the oxidation of methyl phenyl sulfide to methyl phenyl sulfoxide and methyl phenyl sulfone, a reaction mimicking the sulfideperoxidase activity of vanadate-dependent haloperoxidases. These complexes are also catalytically active in the oxidation of styrene to styrene oxide, benzaldehyde, benzoic acid, and 1-phenylethane-1,2-diol.  相似文献   

3.
As a contribution to the development of novel vanadium complexes with pharmacologically interesting properties, two neutral dioxovanadium(V) complexes [VO2(Hpydx-sbdt)] (1) and [VO2(Hpydx-smdt)] (3) [H2pydx-sbdt (I) and H2pydx-smdt (II) are the Schiff bases derived from pyridoxal and S-benzyl- or S-methyldithiocarbazate] have been synthesized by the reaction of [VO(acac)2] and the potassium salts of the ligands in methanol followed by aerial oxidation. Heating of the methanolic solutions of these complexes yields the oxo-bridged binuclear complexes [{VO(pydx-sbdt)}2mu-O] (2) and [{VO(pydx-smdt)}2mu-O] (4). The crystals and molecular structures of 1, 3 x 1.5H2O, and 4 x 2CH3OH have been determined, confirming the ONS binding mode of the dianionic ligands in their thioenolate form. The ring nitrogen of the pyridoxal moiety is protonated in complexes 1 and 3. Acidification of 1 and 3 with HCl dissolved in methanol afforded oxohydroxo complexes, while in a methanolic KOH solution, the corresponding dioxo species K[VO2(pydx-sbdt/smdt)] are formed. Treatment of 1 and 3 with H2O2 yields (unstable) oxoperoxovanadium(V) complexes, the formation of which has been established spectrophotometrically. In vitro antiamoebic activities (against HM1:1MSS strain of Entamoeba histolytica) were established for all of the dioxo- and oxovanadium(V) complexes. The complexes 1, 2, and 4 were more effective than metronidazole, a commonly used drug against amoebiasis, suggesting that oxovanadium(V) complexes derived from thiohydrazones may open a new dimension in the therapy of amoebiasis.  相似文献   

4.
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.  相似文献   

5.
A new series of oxovanadium(IV)-lanthanide(III) heteronuclear complexes [Yb(H2O)8]2[(VO)2(TTHA)](3)21 H2O (1), {[Ho(H2O)7(VO)2(TTHA)][(VO)2(TTHA)](0.5)} 8.5 H2O (2), {[Gd(H2O)7(VO)2(TTHA)][(VO)2(TTHA)](0.5)}8.5 H2O (3), {[Eu(H2O)7][(VO)2(TTHA)](1.5)} 10.5 H2O (4), and [Pr2(H2O)6(SO4)2][(VO)2(TTHA)] (5) (H6TTHA=triethylenetetraaminehexaacetic acid) were prepared by using the bulky flexible organic acid H(6)TTHA as structure-directing agent. X-ray crystallographic studies reveal that they contain the same [(VO)2(TTHA)]2- unit as building block, but the Ln3+ ion lies in different coordination environments. Although the lanthanide ions always exhibit similar chemical behavior, the structures of the complexes are not homologous. Compound 1 is composed of a [Yb(H2O)8]3+ ion and a [(VO)2(TTHA)]2- ion. Compounds 2 and 3 are isomorphous; both contain a trinuclear [Ln(H2O)7(VO)2(TTHA)]+ (Ln=Ho for 2 and Gd for 3) ion and a [(VO)2(TTHA)]2- ion. Compound 4 is an extended one-dimensional chain, in which each Eu3+ ion links two [(VO)2(TTHA)]2- ions. For 5, the structure is further assembled into a three-dimensional network with an interesting framework topology comprising V2Pr2 and V4Pr2 heterometallic lattices. Moreover, 4 and 5 are the first oxovanadium(IV)-lanthanide(III) coordination polymers and thus enlarge the realm of 3d-4f complexes. The IR, UV/Vis, and EPR spectra and the magnetic properties of the heterometallic complexes were studied. Notably, 2 shows unusual ferromagnetic interactions between the VO2+ and Ho3+ ions.  相似文献   

6.
Several iron(III) complexes with N-methylimidazole (N-MeIm) as the ligand have been synthesized by using N-MeIm as the solvent. Under anaerobic conditions, [Fe(N-MeIm)(6)](ClO(4))(3) (1) reacts with stoichiometric amounts of water in N-MeIm to afford the (mu-oxo)diiron(III) complex, [Fe(2)(mu-O)(N-MeIm)(10)](ClO(4))(4) (3). Exposure of a solution of 3 in N-MeIm to stoichiometric and excess CO(2) gives rise to the (mu-oxo)(mu-carboxylato)diiron(III) species [Fe(2)(mu-O)(mu-HCO(2))(N-MeIm)(8)](ClO(4))(3) (4) and the methyl carbonate complex [Fe(2)(mu-O)(mu-CH(3)OCO(2))(N-MeIm)(8)](ClO(4))(3) (5), respectively. Formation of the formato-bridged complex 4 upon fixation of CO(2) by 3 in N-MeIm is unprecedentated. Methyl transfer from N-MeIm to a bicarbonato-bridged (mu-oxo)diiron(III) intermediate appears to give rise to 5. Complex 3 is a good starting material for the synthesis of (mu-oxo)mono(mu-carboxylato)diiron(III) species [Fe(2)(mu-O)(mu-RCO(2))(N-MeIm)(8)](ClO(4))(3) (where R = H (4), CH(3) (6), or C(6)H(5) (7)); addition of the respective carboxylate ligand in stoichiometric amount to a solution of 3 in N-MeIm affords these complexes in high yields. Attempts to add a third bridge to complexes 4, 6, and 7 to form the (mu-oxo)bis(mu-carboxylato)diiron(III) species result in the isolation of the previously known triiron(III) mu-eta(3)-oxo clusters [[Fe(mu-RCO(2))(2)(N-MeIm)](3)O](ClO(4)) (8). The structures of 3, 4, 6, and 7 allow one, for the first time, to inspect the various features of the [Fe(2)(mu-O)(mu-RCO(2))](3+) moiety with no strain from the ligand framework.  相似文献   

7.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

8.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

9.
Reaction of VO(acac)(2) with 1,2-dithiols in the presence of triethylamine gives pentacoordinate oxovanadium complexes [HNEt(3)](2)[VO(bdt)(2)] (1), [HNEt(3)](2)[VO(tdt)(2)] (2), and [HNEt(3)](2)[VO(bdtCl(2))(2)] (3) (where H(2)bdt = 1,2-benzenedithiol, H(2)tdt = 3,4-toluenedithiol, and H(2)bdtCl(2) = 3,6-dichloro-1,2-benzenedithiol). Compounds 1-3 have been characterized by IR, UV/visible, EPR, and mass spectroscopies. The X-ray crystal stuctures of 1 and 2 show hydrogen-bonding interactions between the terminal oxo atom and triethylammonium counterions and between ligand sulfur atoms and the counterions. These interactions are comparable with those found at the active sites of mononuclear molybdenum enzymes.  相似文献   

10.
A series of trigonal bipyramidal pentanuclear complexes involving the alkoxo-diazine ligands poap and p3oap, containing the M(5)[mu-O](6) core is described, which form by a strict self-assembly process. [Co(5)(poap-H)(6)](ClO(4))(4).3H(2)O (1), [Mn(5)(poap-H)(6)](ClO(4))(4).3.5CH(3)OH.H(2)O (2), [Mn(5)(p3oap-H)(6)](ClO(4))(4).CH(3)CH(2)OH.3H(2)O (3), and [Zn(5)(poap-H)(6)](ClO(4))(4).2.5H(2)O (4) are homoleptic pentanuclear complexes, where there is an exact match between the coordination requirements of the five metal ions in the cluster, and the available coordination pockets in the polytopic ligand. [Zn(4)(poap)(poap-H)(3)(H(2)O)(4)] (NO(3))(5).1.5H(2)O (5) is a square [2 x 2] grid with a Zn(4)[mu-O](4) core, and appears to result from the presence of NO(3), which is thought to be a competing ligand in the self-assembly. X-ray structures are reported for 1, 4, and 5. 1 crystallized in the monoclinic system, space group P2(1)/n with a = 13.385(1) A, b = 25.797(2) A, c = 28.513(3) A, beta = 98.704(2) degrees, and Z = 4. 4 crystallized in the triclinic system, space group P1 with a = 13.0897(9) A, b = 18.889(1) A, c = 20.506(2) A, alpha = 87.116(1) degrees, beta = 74.280(2) degrees, gamma = 75.809(2) degrees, and Z = 2. 5 crystallized in the monoclinic system, space group P2(1)/n with a = 14.8222(7) A, b = 21.408(1) A, c = 21.6197(9) A, beta = 90.698(1) degrees, and Z = 4. Compounds 1-3 exhibit intramolecular antiferromagnetic coupling.  相似文献   

11.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

12.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

13.
Reactions of Mn(II)(PF(6))(2) and Mn(II)(O(2)CCH(3))(2).4H(2)O with the tridentate facially capping ligand N,N-bis(2-pyridylmethyl)ethylamine (bpea) in ethanol solutions afforded the mononuclear [Mn(II)(bpea)](PF(6))(2) (1) and the new binuclear [Mn(2)(II,II)(mu-O(2)CCH(3))(3)(bpea)(2)](PF(6)) (2) manganese(II) compounds, respectively. Both 1 and 2 were characterized by X-ray crystallographic studies. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 11.9288(7) A, b = 22.5424(13) A, c =13.0773(7) A, alpha = 90 degrees, beta = 100.5780(10 degrees ), gamma = 90 degrees, and Z = 4. Crystals of complex 2 are orthorhombic, space group C222(1), with a = 12.5686(16) A, b = 14.4059(16) A, c = 22.515(3) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, and Z = 4. The three acetates bridge the two Mn(II) centers in a mu(1,3) syn-syn mode, with a Mn-Mn separation of 3.915 A. A detailed study of the electrochemical behavior of 1 and 2 in CH(3)CN medium has been made. Successive controlled potential oxidations at 0.6 and 0.9 V vs Ag/Ag(+) for a 10 mM solution of 2 allowed the selective and nearly quantitative formation of [Mn(III)(2)(mu-O)(mu-O(2)CCH(3))(2)(bpea)(2)](2+) (3) and [Mn(IV)(2)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](3+) (4), respectively. These results have shown that each substitution of an acetate group by an oxo group is induced by a two-electron oxidation of the corresponding dimanganese complexes. Similar transformations have been obtained if 2 is formed in situ either by direct mixing of Mn(2+) cations, bpea ligand, and CH(3)COO(-) anions with a 1:1:3 stoichiometry or by mixing of 1 and CH(3)COO(-) with a 1:1.5 stoichiometry. Associated electrochemical back-transformations were investigated. 2, 3, and the dimanganese [Mn(III)Mn(IV)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](2+) analogue (5) were also studied for their ability to disproportionate hydrogen peroxide. 2 is far more active compared to 3 and 5. The EPR monitoring of the catalase-like activity has shown that the same species are present in the reaction mixture albeit in slightly different proportions. 2 operates probably along a mechanism different from that of 3 and 5, and the formation of 3 competes with the disproportionation reaction catalyzed by 2. Indeed a solution of 2 exhibits the same activity as 3 for the disproportionation reaction of a second batch of H(2)O(2) indicating that 3 is formed in the course of the reaction.  相似文献   

14.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

15.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

16.
17.
Oxovanadium complexes with H(2)bzimpy (2,6-bis[benzimidazol-2'-yl]pyridine) and Me(2)bzimpy (2,6-bis[N'-methylbenzimidazol-2'-yl]pyridine), and H(3)ntb (tris[benzimidazol-2'-yl-methyl]amine) and Me(3)ntb (tris[N'-methylbenzimidazol-2'-yl-methyl]amine) have been synthesized. Dioxovanadium(V) and oxovanadium(IV) complexes prepared from H(2)bzimpy and Me(2)bzimpy are [V(V)O(2)(Hbzimpy)].1.25H(2)O (1), [V(V)O(2)(Me(2)bzimpy)](ClO(4)).H(2)O (3), [V(IV)O(H(2)bzimpy)(H(2)O)(2)](CF(3)SO(3))(2).2H(2)O (2), and [V(IV)O(Me(2)bzimpy)(H(2)O)(2)](CF(3)SO(3))(2) (4). H(3)ntb and Me(3)ntb afforded oxovanadium(IV) complexes, [V(IV)O(Hntb)].2MeOH (5), [V(IV)O(H(3)ntb)Cl]Cl.H(2)O (7), [V(IV)O(Me(3)ntb)SO(4)].H(2)O (9), [V(IV)O(Me(3)ntb)Cl]Cl.H(2)O (10), and mixed-valence complexes, [(H(3)ntb)V(IV)O(mu-O)V(V)O(H(3)ntb)](CF(3)SO(3))(3).2H(2)O (8) and [(Me(3)ntb)V(IV)O(mu-O)V(V)O(Me(3)ntb)](CF(3)SO(3))(3).3H(2)O (11). Crystal structures of 2, 7, and 11 are reported. The mixed-valence complexes, 8 and 11, show 15-line isotropic ESR spectra in fluid solutions at room temperature. These compounds also exhibit an intervalence transfer band around 1015 nm which is essentially independent of solvent, so these compounds are stable, mixed-valence species where the single unpaired electron is delocalized over the two vanadium centers at ambient temperature. With respect to one-electron reduction, the dioxovanadium(V) complexes are redox-potential equivalent with their monooxovanadium(IV) counterparts.  相似文献   

18.
Using a series flexible thioether ligands, 4-(2-pyridylmethylthio)benzoic acid (HL(1)), 4-(4-pyridylmethylthio)benzoic acid (HL(2)) and 4-(3-pyridylmethylthio)benzoic acid (HL(3)), a 1D infinite chain [Zn(3)(L(1))(6)](n) (), a 2D interpenetrating sheet [Zn(L(2))(2)](n) (), and a chiral 3D framework [Zn(L(3))(2)H(2)O](n) () were obtained. Luminescent properties of these compounds were also studied.  相似文献   

19.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

20.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号