首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
电化学聚合   总被引:4,自引:0,他引:4  
廖川平 《化学通报》2000,63(2):37-41
介绍了电化学聚合反应的定义、分类,机理和应用,阐述了电化学缩合反应的电化学加成聚合反应这两大类电化学聚合反应的本质差别,另外还提出了电化学氰基加成聚合反应的概念。  相似文献   

2.
彭宇行 《化学教育》1998,(6):8-10,13
活性聚合是连锁聚合反应体系中链转移和终止反应速率为零时的特殊反应类型,表现活性聚合和准活性聚合则是链转移或终止反应未被完全消除而人有活性聚合物特征两类聚合物反应,是非活性聚合活性聚合过渡和逼近时的两种聚合反应类型,本文对活性聚合,表现活性聚合和准活性聚合的基本概念及它们之间的区别作了简单的介绍。  相似文献   

3.
活性聚合是连锁聚合反应体系中链转移和终止反应速率为零时的特殊反应类型,表现活性聚合和准活性聚合则是链转移或终止反应未被完全消除而又具有活性聚合特征的两类聚合反应,是非活性聚合向活性聚合过渡和逼近时的两种聚合反应类型。本文对活性聚合、表观活性聚合和准活性聚合的基本概念及它们之间的区别作了简单的介绍。  相似文献   

4.
彭宇行 《大学化学》1996,11(6):27-30
表观活性正离子聚合是链转移反应未被完全消除而又具有活性聚合特征的一类正离子聚合体系,是非活性聚合向活性聚合过渡和逼近时的一类聚合反应。本文就表观活性正离子聚合的基本概念以及表观活性体系中不同链转移反应的特征和识别作了简单的介绍。  相似文献   

5.
自蔓延波聚合研究进展   总被引:2,自引:0,他引:2  
波聚合是指靠自身反应放热产生的热波维持反应进行而将单体转化为聚合物的聚合方法。由于波聚合不需要外界持续供热、无溶剂排放和反应设备简单,是一种节能无污染的低成本材料制备工艺,极具应用前景。本文综述了从发现波聚合至今已取得的研究成果,包括波聚合机理、聚合波产生并自蔓延的条件、波结构、传播速度、传播模式以及产物特征,并对波聚合工艺用于高分子材料的制备进行了评述。  相似文献   

6.
等离子体引发丙烯酰胺的反相悬浮聚合   总被引:2,自引:0,他引:2  
通过等离子体引发技术进行了丙烯酰胺的反相悬浮聚合研究,考察了后聚合时间,放电时间,放电功率,单体浓度,分散剂浓度及溶剂极性对聚合物分子量和转化率的影响。结果发现:延长后聚合时间有利于反应的进行,而在聚合反应中存在着一个最佳的单体浓度值,增加溶剂的极性有利于反应进行,降低体系中空气残留量也有利于反应进行。  相似文献   

7.
自由基活性聚合的进展   总被引:1,自引:0,他引:1  
自由基活性聚合是人们在们在近年来探索的一类新的聚合反应.本文简要地综述了这类反应的进展.  相似文献   

8.
有机硅复合乳液聚合的动力学特征和成核机理   总被引:14,自引:0,他引:14  
研究了聚合方法、搅拌强度、反应温度及原料用量对PHMS/BA复合乳液聚合反应转化率、反应速率的影响。结果表明:反应前期,一次加料法比半连续滴加法聚合速率快,但反应终了转化率却略低于后者;聚合反应速率随搅拌强度增大略有降低,随反应温度升高而加快,Ea=132.77kJ/mol;反应的速率和转化率随PHMS用量的增加而降低,随NMA用量的增加而升高。乳液粒径随搅拌强度的主粒径追踪结果表明:乳液粒径随搅  相似文献   

9.
阳离子聚合的进展   总被引:3,自引:0,他引:3  
首先介绍了阳离子聚合的简史,由于阳离子高活性的特点使其发展较慢,阳离子聚合研究的突破来自对引发反应的深入理解,而近代阳离子聚合的要点则在于使链引发、链增长和链终止成为可控。阳离子聚合的进展密切与大分子工程相关。本文对活性阳郭聚合做了较详细的讨论。并举遥爪聚人事物及嵌段聚合物的研究成就。最后,提出了阳离子聚合是发展中的问题供参考。  相似文献   

10.
CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合   总被引:14,自引:2,他引:12  
讨论了以α-溴代丙酸乙酯(EPN-Br)为引发剂、卤化亚铜(CuX)/联二吡啶(bpy)为催化剂,80℃下,甲基丙烯酸甲酯(MMA)地不同溶剂中的原子转移自由基聚合(ATRP)反应。通过对催化剂CuBr或CuCl及几种溶剂的考察,发现在80℃下EPN-Br/CuBr/bpy能有效控制丙烯酸甲酯(MA)的本体ATRP反应,但并不能很好地控制MMA在EAc中的聚合反应为一可控聚合过程,引发效率为0.8  相似文献   

11.
Random copolymers of 3-methyl thienylmethacrylate and methyl methacrylate were synthesized via free radical polymerization. Electro-copolymerizations of random copolymers with thiophene and/or pyrrole were carried out in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB), water-p-toluene sulfonic acid (PTSA) solvent-electrolyte couples. Oxidative polymerization of thiophene functionalized random copolymer was also achieved by constant current electrolysis and chemical polymerization. The characterizations were done by conductivity measurements, cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetry analysis (TGA), scanning electron microscopy (SEM).  相似文献   

12.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A poly(p‐phenylene) (PPP)‐poly(4‐diphenylaminostyrene) (PDAS) bipolar block copolymer was synthesized for the first time. A prerequisite prepolymer, poly(1,3‐cyclohexadiene) (PCHD)‐PDAS binary block copolymer, in which the PCHD block consisted solely of 1,4‐cyclohexadiene (1,4‐CHD) units, was synthesized by living anionic block copolymerization of 1,3‐cyclohexadiene and 4‐diphenylaminostyrene. To obtain the PPP‐PDAS bipolar block copolymer, the dehydrogenation of this prepolymer with quinones was examined, and tetrachloro‐1,2‐(o)‐benzoquinone was found to be an appropriate dehydrogenation reagent. This dehydrogenation reaction was remarkably accelerated by ultrasonic irradiation, effectively yielding the target PPP‐PDAS bipolar block copolymer. The hole and electron drift mobilities for PPP‐PDAS bipolar block copolymer were both on the order of 10?3 to 10?4 cm2/V·s, with a negative slope when plotted against the square root of the applied field. Therefore, this bipolar block copolymer was found to act as a bipolar semi‐conducting copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
15.
Photoirradiations onto polycyclic acetals, i. e., polymers containing cyclic acetal groups in the molecule, were carried out at 30 or 40°C. The terpolymer of vinyl formal/vinyl acetate/vinyl alcohol (PVFAcA) was decomposed by means of irradiation, while poly-2-vinyl-1,3-dioxolane (PVDO) and poly-2-vinyl-4-hydroxy-methyl-1,3-dioxolane (PVHDO) were crosslinked. These results indicate the possibility of control of the decomposition or the crosslinking of polymer.  相似文献   

16.
A thiophene‐functionalized methacrylate monomer (3‐methylthienyl methacrylate) was synthesized via the esterification of 3‐thiophene methanol with methacryloyl chloride. The methacrylate monomer was polymerized by free‐radical polymerization in the presence of azobisisobutyronitrile as the initiator. Graft copolymers of poly(3‐methylthienyl methacrylate) (PMTM2) and polypyrrole and of PMTM2 and polythiophene were synthesized by constant‐potential electrolyses. p‐Toluene sulfonic acid, sodium dodecyl sulfate, and tetrabutylammonium tetrafluoroborate were used as the supporting electrolytes. PMTM2‐coated platinum electrodes were used as anodes in the polymerization of pyrrole and thiophene. Moreover, the oxidative polymerization of poly(3‐methylthienyl methacrylate) (PMTM1) was studied with FeCl3 as the oxidant. The self‐polymerization of PMTM1 was also investigated by galvanostatic electrolysis both in dichloromethane and in propylene carbonate. The structures of PMTM1 and PMTM2 were investigated by several spectroscopic and thermal methods. The grafting process was elucidated with conductivity measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4131–4140, 2002  相似文献   

17.
A series of miniemulsion systems based on styrene/azobisisobutyronitrile in the presence of poly(methyl methacrylate‐b‐2‐(dimethylamino)ethyl methacrylate) as a surfactant and hexadecane (HD) as a cosurfactant were developed. For comparison, a series of pseudoconventional emulsions also were carried out with the same procedure used for the aforementioned series but without the cosurfactant (HD). Both the droplet size and shelf life were also measured. Experimental results indicate that it is possible to slow the effect of Ostwald ripening and thereby produce a stable miniemulsion with the block copolymer as the surfactant and HD as the cosurfactant. In addition, the extent to which varying the surfactant concentration and copolymer composition could affect both the polymer particle size during the polymerization and the polymerization rate was examined. Variation in the polymer particle sizes during polymerization indicates that droplet and aqueous (micellar or both homogeneous) nucleation occurs in the miniemulsion polymerization. With the same concentration of the surfactant used in the miniemulsion polymerization, the polymerization rates of systems with M12B36 are faster than those of systems with M12B12. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1818–1827, 2000  相似文献   

18.
ABA-type block copolymers of poly(trimethylene carbonate) with poly(ethylene glycol) (Mn 6820), PTMC-b-PEG-b-PTMC, were synthesized by the ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) in the presence of poly-(ethylene glycol) with stannous octoate catalyst, and the copolymers with various compositions were obtained. The PTMC-b-PEG-b-PTMC copolymers were characterized with Fourier transform infrared and nuclear magnetic resonance spectroscopies. The intrinsic viscosities of resulting copolymers increased with the increase of 1,3-dioxan-2-one content in feed while the molar ratio of monomer over catalyst kept constant. It has been observed that the glass transition temperature (Tg) of the PTMC segments in copolymers, recorded from differential scanning calorimetry, was dependent on the composition of copolymers. The melting temperature (Tm) of PEG blocks in copolymer was lower than that of PEG polymer, and then disappeared as the length of PTMC blocks increased. The results of dynamic contact angle measurement clearly revealed that the hydrophilicity of resulting copolymers increased greatly with the increase of PEG content in copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 695–702, 1998  相似文献   

19.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

20.
A biphasic one‐pot polymerization method enables the preparation of block copolymers from monomers with similar and competitive reactivities without the addition of external materials. AB diblock copolymers were prepared by encapsulating a frozen solution of monomer B on the bottom of a reaction vessel, while the solution polymerization of monomer A was conducted in a liquid layer above. Physical separation between the solid and liquid phases permitted only homopolymerization of monomer A until heating above the melting point of the lower phase, which released monomer B, allowing the addition of the second block to occur. The triggered release of monomer B allowed for chain extension without additional deoxygenation steps or exogenous monomer addition. A method for the closed (i.e., without addition of external reagents) one‐pot synthesis of block copolymers with conventional glassware using straightforward experimental techniques has thus been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号