首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper a regularized stochastic decomposition algorithm with master programs of finite size is described for solving two-stage stochastic linear programming problems with recourse. In a deterministic setting cut dropping schemes in decomposition based algorithms have been used routinely. However, when only estimates of the objective function are available such schemes can only be properly justified if convergence results are not sacrificed. It is shown that almost surely every accumulation point in an identified subsequence of iterates produced by the algorithm, which includes a cut dropping scheme, is an optimal solution. The results are obtained by including a quadratic proximal term in the master program. In addition to the cut dropping scheme, other enhancements to the existing methodology are described. These include (i) a new updating rule for the retained cuts and (ii) an adaptive rule to determine when additional reestimation of the cut associated with the current solution is needed. The algorithm is tested on problems from the literature assuming both descrete and continuous random variables.A majority of this work is part of the author's Ph.D. dissertation prepared at the University of Arizona in 1990.  相似文献   

2.
3.
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory’s fractional cutting plane algorithm or a branch-and-bound algorithm is applied.  相似文献   

4.
We consider convex optimization and variational inequality problems with a given separable structure. We propose a new decomposition method for these problems which combines the recent logarithmic-quadratic proximal theory introduced by the authors with a decomposition method given by Chen-Teboulle for convex problems with particular structure. The resulting method allows to produce for the first time provably convergent decomposition schemes based on C Lagrangians for solving convex structured problems. Under the only assumption that the primal-dual problems have nonempty solution sets, global convergence of the primal-dual sequences produced by the algorithm is established. Received: October 6, 1999 / Accepted: February 2001?Published online September 17, 2001  相似文献   

5.
Solving deterministic equivalent formulations of two-stage stochastic linear programs using interior point methods may be computationally difficult due to the need to factorize quite dense search direction matrices (e.g., AA T ). Several methods for improving the algorithmic efficiency of interior point algorithms by reducing the density of these matrices have been proposed in the literature. Reformulating the program decreases the effort required to find a search direction, but at the expense of increased problem size. Using transpose product formulations (e.g., A T A) works well but is highly problem dependent. Schur complements may require solutions with potentially near singular matrices. Explicit factorizations of the search direction matrices eliminate these problems while only requiring the solution to several small, independent linear systems. These systems may be distributed across multiple processors. Computational experience with these methods suggests that substantial performance improvements are possible with each method and that, generally, explicit factorizations require the least computational effort.  相似文献   

6.
Staircase structured linear programs arise naturally in the study of engineering economic systems. One general approach to solving such LP's is the technique of nested decomposition of the primal or dual problem. The research described in this paper proposes a revised decomposition algorithm that incorporates knowledge of the structure of the staircase basis in forming the decomposed linear programs. Column proposals from the revised subproblems are shown to achieve maximum penetration against the master problem basis. The proposed algorithm resorts to the regular Dantzig-Wolfe subproblem to test for optimality. The algorithm is shown to be finite and is compared to the Abrahamson-Wittrock algorithm. Computational results indicate substantial improvement over the Dantzig-Wolfe algorithm in most cases. A numerical example of the algorithm is provide in the appendix. This research was supported by National Science Foundation grant ECS-8106455 to Cornell University.  相似文献   

7.
We consider the diagonal inexact proximal point iteration where f(x,r)=c T x+r∑exp[(A i x-b i )/r] is the exponential penalty approximation of the linear program min{c T x:Axb}. We prove that under an appropriate choice of the sequences λ k , ε k and with some control on the residual ν k , for every r k →0+ the sequence u k converges towards an optimal point u of the linear program. We also study the convergence of the associated dual sequence μ i k =exp[(A i u k -b i )/r k ] towards a dual optimal solution. Received: May 2000 / Accepted: November 2001?Published online June 25, 2002  相似文献   

8.
9.
A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear minimization with linear inequality constraints [8]. In the proposed approach, a Newton step is derived from the complementarity conditions. Based on this Newton step, a trust region subproblem is formed, and the original objective function is monotonically decreased. Explicit sufficient decrease conditions are proposed for satisfying the first order and second order necessary conditions.?The objective of this paper is to establish global and local convergence properties of the proposed trust region and affine scaling interior point method. It is shown that the proposed explicit decrease conditions are sufficient for satisfy complementarity, dual feasibility and second order necessary conditions respectively. It is also established that a trust region solution is asymptotically in the interior of the proposed trust region subproblem and a properly damped trust region step can achieve quadratic convergence. Received: January 29, 1999 / Accepted: November 22, 1999?Published online February 23, 2000  相似文献   

10.
Separated continuous linear programs (SCLP) are a class of continuous linear programs which, among other things, can serve as a useful model for dynamic network problems where storage is permitted at the nodes. Recent work on SCLP has produced a detailed duality theory, conditions under which an optimal solution exists with a finite number of breakpoints, a purification algorithm, as well as a convergent algorithm for solving SCLP under certain assumptions on the problem data. This paper combines much of this work to develop a possible approach for solving a wider range of SCLP problems, namely those with fairly general costs. The techniques required to implement the algorithm are no more than standard (finite-dimensional) linear programming and line searching, and the resulting algorithm is simplex-like in nature. We conclude the paper with the numerical results obtained by using a simple implementation of the algorithm to solve a small problem. Received: May 1994 / Accepted: March 2002?Published online June 25, 2002  相似文献   

11.
An implementation of the primal-dual predictor-corrector interior point method is specialized to solve block-structured linear programs with side constraints. The block structure of the constraint matrix is exploited via parallel computation. The side constraints require the Cholesky factorization of a dense matrix, where a method that exploits parallelism for the dense Cholesky factorization is used. For testing, multicommodity flow problems were used. The resulting implementation is 65%–90% efficient, depending on the problem instance. For a problem with K commodities, an approximate speedup for the interior point method of 0.8K is realized.  相似文献   

12.
In this article, we propose a new algorithm for the resolution of mixed integer bi-level linear problem (MIBLP). The algorithm is based on the decomposition of the initial problem into the restricted master problem (RMP) and a series of problems named slave problems (SP). The proposed approach is based on Benders decomposition method where in each iteration a set of variables are fixed which are controlled by the upper level optimization problem. The RMP is a relaxation of the MIBLP and the SP represents a restriction of the MIBLP. The RMP interacts in each iteration with the current SP by the addition of cuts produced using Lagrangian information from the current SP. The lower and upper bound provided from the RMP and SP are updated in each iteration. The algorithm converges when the difference between the upper and lower bound is within a small difference ε. In the case of MIBLP Karush–Kuhn–Tucker (KKT) optimality conditions could not be used directly to the inner problem in order to transform the bi-level problem into a single level problem. The proposed decomposition technique, however, allows the use of KKT conditions and transforms the MIBLP into two single level problems. The algorithm, which is a new method for the resolution of MIBLP, is illustrated through a modified numerical example from the literature. Additional examples from the literature are presented to highlight the algorithm convergence properties.  相似文献   

13.
This note studies A , a condition number used in the linear programming algorithm of Vavasis and Ye [14] whose running time depends only on the constraint matrix A∈ℝ m×n , and (A), a variant of another condition number due to Ye [17] that also arises in complexity analyses of linear programming problems. We provide a new characterization of A and relate A and (A). Furthermore, we show that if A is a standard Gaussian matrix, then E(ln A )=O(min{mlnn,n}). Thus, the expected running time of the Vavasis-Ye algorithm for linear programming problems is bounded by a polynomial in m and n for any right-hand side and objective coefficient vectors when A is randomly generated in this way. As a corollary of the close relation between A and (A), we show that the same bound holds for E(ln(A)). Received: September 1998 / Accepted: September 2000?Published online January 17, 2001  相似文献   

14.
Received January 24, 1996 / Revised version received December 24, 1997 Published online October 21, 1998  相似文献   

15.
16.
We analyze perturbations of the right-hand side and the cost parameters in linear programming (LP) and semidefinite programming (SDP). We obtain tight bounds on the perturbations that allow interior-point methods to recover feasible and near-optimal solutions in a single interior-point iteration. For the unique, nondegenerate solution case in LP, we show that the bounds obtained using interior-point methods compare nicely with the bounds arising from using the optimal basis. We also present explicit bounds for SDP using the Monteiro-Zhang family of search directions and specialize them to the AHO, H..K..M, and NT directions. Received: December 1999 / Accepted: January 2001?Published online March 22, 2001  相似文献   

17.
In the predictor-corrector method of Mizuno, Todd and Ye [1], the duality gap is reduced only at the predictor step and is kept unchanged during the corrector step. In this paper, we modify the corrector step so that the duality gap is reduced by a constant fraction, while the predictor step remains unchanged. It is shown that this modified predictor-corrector method retains the iteration complexity as well as the local quadratic convergence property.  相似文献   

18.
Well known extensions of the classical transportation problem are obtained by including fixed costs for the production of goods at the supply points (facility location) and/or by introducing stochastic demand, modeled by convex nonlinear costs, at the demand points (the stochastic transportation problem, [STP]). However, the simultaneous use of concave and convex costs is not very well treated in the literature. Economies of scale often yield concave cost functions other than fixed charges, so in this paper we consider a problem with general concave costs at the supply points, as well as convex costs at the demand points. The objective function can then be represented as the difference of two convex functions, and is therefore called a d.c. function. We propose a solution method which reduces the problem to a d.c. optimization problem in a much smaller space, then solves the latter by a branch and bound procedure in which bounding is based on solving subproblems of the form of [STP]. We prove convergence of the method and report computational tests that indicate that quite large problems can be solved efficiently. Problems up to the size of 100 supply points and 500 demand points are solved. Received October 11, 1993 / Revised version received July 31, 1995 Published online November 24, 1998  相似文献   

19.
Optimal solutions of interior point algorithms for linear and quadratic programming and linear complementarity problems provide maximally complementary solutions. Maximally complementary solutions can be characterized by optimal partitions. On the other hand, the solutions provided by simplex–based pivot algorithms are given in terms of complementary bases. A basis identification algorithm is an algorithm which generates a complementary basis, starting from any complementary solution. A partition identification algorithm is an algorithm which generates a maximally complementary solution (and its corresponding partition), starting from any complementary solution. In linear programming such algorithms were respectively proposed by Megiddo in 1991 and Balinski and Tucker in 1969. In this paper we will present identification algorithms for quadratic programming and linear complementarity problems with sufficient matrices. The presented algorithms are based on the principal pivot transform and the orthogonality property of basis tableaus. Received April 9, 1996 / Revised version received April 27, 1998? Published online May 12, 1999  相似文献   

20.
A smoothing method for mathematical programs with equilibrium constraints   总被引:15,自引:0,他引:15  
Received May 3, 1996 / Revised version received November 19, 1997 Published online January 20, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号