首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The role phosphine ligands play in the palladium(ii)-bis-phosphine-hydride cation catalysed hydrogenation of diphenylacetylene is explored through a PHIP (parahydrogen induced polarization) NMR study. The precursors Pd(LL')(OTf)(2) () [LL' = dcpe (PCy(2)CH(2)CH(2)PCy(2)), dppe, dppm, dppp, cppe (PCy(2)CH(2)CH(2)PPh(2))] are used. Alkyl palladium intermediates of the type [Pd(LL')(CHPhCH(2)Ph)](OTf) ( and ) are detected and demonstrated to play an active role in hydrogenation catalysis. Magnetization transfer experiments reveal chemical exchange from the alpha-H of the alkyl ligand of (LL' = dcpe) and linkage isomer ' (LL' = cppe) into trans-stilbene on the NMR timescale. Activation parameters (DeltaH( not equal) and DeltaS( not equal)) for this transformation have been determined. These experiments, coupled with GC/MS data, indicate that the catalytic activity is greater in methanol, where it follows the order: dcpe > cppe > dppp > dppe > dppm, than in CD(2)Cl(2). All five of the phosphine systems described are less active than those based on bcope [where bcope is (C(8)H(14))PCH(2)-CH(2)P(C(8)H(14))] and (t)bucope [where (t)bucope is (C(8)H(14))PC(6)H(4)CH(2)P((t)Bu)(2)]. cis, cis-1,2,3,4-Tetraphenyl-buta-1,3-diene is detected as a minor reaction product with Pd(LL')(PhCH-CHPh-CPh[double bond, length as m-dash]CHPh)(+) () also being shown to play a role in the alkyne dimerisation step.  相似文献   

2.
Pd(PEt3)2(OTf)2, acting as an in situ source of Pd(PEt3)2, reacts with an alkyne and hydrogen via phosphine loss to form the detectable hydride-containing species Pd(PEt3)2(H)(CHPhCH2Ph), cis- and trans-Pd(PEt3)2(H)(CPh=CHPh), and Pd2(PEt3)3(H)(CHPhCH2Ph)2+, which map onto the reaction scheme predicted by density functional theory.  相似文献   

3.
Pd(bcope)(OTf)2 (where bcope is (C8H14)PCH2CH2P(C8H14)) is shown to react with an alkyne in the presence of parahydrogen to form alkyl hydrides, such as Pd(bcope)(CHPhCH2Ph)(H), that are detectable by NMR spectroscopy because the proton resonances of the alkyl arm appear with strongly enhanced signal strengths.  相似文献   

4.
Reduction of compound "Pd(bcope)(OTf)2" [bcope = (c-C8H14-1,5)PCH2CH2P(c-C8H14-1,5); OTf = O3SCF3] with H2/CO yields a mixture of Pd(I) compounds [Pd2(bcope)2(CO)2](OTf)2 (1) and [Pd2(bcope)2(mu-CO)(mu-H)](OTf) (2), whereas reduction with H2 or Ph3SiH in the absence of CO leads to [Pd3(bcope)3(mu3-H)2](OTf)2 (3). Exposure of 3 to CO leads to 1 and 2. The structures of 1 and 3 have been determined by X-ray diffraction. Complex [Pd2(bcope)2(CO)2](2+) displays a metal-metal bonded structure with a square planar environment for the Pd atoms and terminally bonded CO ligands and is fluxional in solution. DFT calculations aid the interpretation of this fluxional behavior as resulting from an intramolecular exchange of the two inequivalent P atom positions via a symmetric bis-CO-bridged intermediate. A cyclic voltammetric investigation reveals a very complex redox behavior for the "Pd(bcope)(OTf)2"/CO system and suggests possible pathways leading to the formation of the various observed products, as well as their relationship with the active species of the PdL2(2+)/CO/H2-catalyzed oxo processes (L2 = diphosphine ligands).  相似文献   

5.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

6.
Complex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed. In acetonitrile under reflux, the Os-C double bond of 2 undergoes hydrogenation to give 1,1-diphenylpropene and [Os{CH2CH(CH3)PiPr2(CH3CN)3(PiPr3)]BF4 (11), containing a metalated phosphine ligand. This reaction is a first-order process with activation parameters of DeltaH = 89.0 +/- 6.3 kJ mol-1 and DeltaS = -43.5 +/- 9.6 J mol-1 K-1. The X-ray structures of 2 and 3 are also reported.  相似文献   

7.
Thermal reaction of 1:1 mixtures of the RuCl(2)(PPh(3))(3) and phosphinoimine R(2)PN=CPh(2) (R = Ph, iPr, Me) at 140 °C results in isolation of the dimeric species [RuCl(μ-Cl)(PPh(3))(C(6)H(4)(PPh(2))C(Ph)NH)](2) (R = Ph 1, iPr 2, Me 3) containing phosphine-imine chelating ligands. Subsequent reaction of 1 and 3 with one equivalent of pyridine at room temperature give RuCl(2)(PPh(3))(py)(C(6)H(4)(PR(2))C(Ph)NH) (R = Ph 4, Me 5). Excess pyridine reacts with 2 to give a mixture of the cis and trans-isomers of RuCl(2)(py)(2)(C(6)H(4)(PiPr(2))C(Ph)NH) 6 and 7 respectively. Treatment of 5 with excess PPh(3) affords RuCl(2)(PPh(3))(2)(C(6)H(4)(PMe(2))C(Ph)NH) 8. Aspects of the mechanism of the thermal rearrangements of the phosphinoimine to the phosphine-imine ligands are considered and the isolation of RuCl(2)(Ph(2)PN=CPh(2))(SIMes)(CHPh) 9 and RuCl(2)(PPh(3))(2)(HN=C(Ph)C(6)H(4)) 10 provide support for a proposed mechanism involving a intermediate containing a Ru-bound metallated aryl-imine fragment.  相似文献   

8.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

9.
The new ligand, hydrotris[3-(diphenylmethyl)pyrazol-1-yl]borate, Tp(CHPh2), has been synthesized and its coordination chemistry was compared with that of the analogous Tp(iPr). The new ligand was converted to a variety of complexes, such as M[Tp(CHPh2)]X (M = Co, Ni, Zn; X = Cl, NCO, NCS), Pd[Tp(CHPh2)][eta3-methallyl], Co[Tp(CHPh2)](acac), and Co[Tp(CHPh2)](scorpionate ligand). Compounds Tl[Tp(CHPh2)], 1, Co[Tp(CHPh2)]Cl, 2, Co[Tp(CHPh2)](NCS)(DMF), 3, Ni[Tp(CHPh2)](NCS)(DMF)2, 4, Co[Tp(CHPh2)](acac), 5, Co[Tp(CHPh2)][Ph2Bp], 6, Co[Tp(CHPh2)][Bp(Ph)], 7, Co[Tp(CHPh2)][Tp], 8, and (Ni[Tp(CHPh2)])2[C2O4](H2O)2, 9, were structurally characterized.  相似文献   

10.
The synthesis and structural characterization of the carboxylate-bridged, heterodinuclear iron-sodium complex [NaFe(PIC2DET)(mu-O2CTrp)3] (2), where PIC2DET (1) is a 2,3-diethynyltriptycene-linked dipicolinic methyl ester ligand and Trp is 9-triptycenyl, are described. The metal ions in 2 are bridged by three triptycene carboxylates with an Fe...Na distance of 3.181(2) A, and each is coordinated to a pyridine nitrogen and carbonyl oxygen atom of 1, forming two five-membered chelate rings. A linkage isomer in which Fe1 is bound by the other ester oxygen atom of 1 was identified by X-ray crystallographic analysis. Treatment of 2 with Fe(OTf)2.2MeCN resulted in substitution of sodium by iron(II) to give the cationic diiron(II) complex [Fe2(PIC2DET)(mu-O2CTrp)3][OTf] (3). This reaction was investigated by UV-vis, IR, MS, and stopped-flow spectroscopy. The substitution is first order with respect to 2 and zero order with respect to Fe(OTf)2.2MeCN (kobs = 21 +/- 2 s-1), consistent with a dissociative mechanism. A positive enthalpy of activation (DeltaH = 59 +/- 6 kJ mol-1) and negative entropy of activation (DeltaS = -20 +/- 6 J mol-1 K-1) were calculated from the temperature dependence of the rate-determining dissociation step.  相似文献   

11.
The copper coordination chemistry of two phthalazine-based ligands of differing steric bulk was investigated. A family of dinuclear complexes were prepared from reactions of [Cu(2)(bdptz)(MeCN)(2)](OTf)(2), 1(OTf)(2), where bdptz = 1,4-bis(2,2'-dipyridylmethyl)phthalazine. Treatment of 1(OTf)(2) with NaO(2)CCH(3) afforded the class I mixed-valent compound [Cu(2)(bdptz)(2)](OTf)(3), 2(OTf)(3), by disproportionation of Cu(I). Compound 2(OTf)(3) displays an electron paramagnetic resonance spectrum, with g( parallel ) = 2.25 (A( parallel ) = 169 G) and g( perpendicular ) = 2.06, and exhibits a reversible redox wave at -452 mV versus Cp(2)Fe(+)/Cp(2)Fe. The complex [Cu(2)(bdptz)(micro-OH)(MeCN)(2)](OTf)(3), 3(OTf)(3), was prepared by chemical oxidation of 1 with AgOTf, and exposure of 1 to dioxygen afforded [Cu(2)(bdptz)(micro-OH)(2)](2)(OTs)(4), 4(OTs)(4), which can also be obtained directly from [Cu(H(2)O)(6)](OTs)(2). In compound [Cu(2)(bdptz)(micro-vpy)](OTf)(2), 5(OTf)(2), where vpy = 2-vinylpyridine, the vpy ligand bridges the two Cu(I) centers by using both its pyridine nitrogen and the olefin as donor functionalities. The sterically hindered compounds [Cu(2)(Ph(4)bdptz)(MeCN)(2)](OTf)(2), 6(OTf)(2), and [Cu(2)(Ph(4)bdptz)(micro-O(2)CCH(3))](OTf), 7(OTf), were also synthesized, where Ph(4)bdptz = 1,4-bis[bis(6-phenyl-2-pyridyl)methyl]phthalazine. Complexes 1-7 were characterized structurally by X-ray crystallography. In 6 and 7, the four phenyl rings form a hydrophobic pocket that houses the acetonitrile and acetate ligands. Complex 6 displays two reversible redox waves with E(1/2) values of +41 and +516 mV versus Cp(2)Fe(+)/Cp(2)Fe. Analysis of oxygenated solutions of 6 by electrospray ionization mass spectrometry reveals probable aromatic hydroxylation of the Ph(4)bdptz ligand. The different chemical and electrochemical behavior of 1 versus 6 highlights the influence of a hydrophobic binding pocket on the stability and reactivity of the dicopper(I) centers.  相似文献   

12.
The kinetics of the oxidation of trans-[RuIV(tmc)(O)(solv)]2+ to trans-[RuVI(tmc)(O)2]2+ (tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic tertiary amine ligand; solv = H2O or CH3CN) by MnO4- have been studied in aqueous solutions and in acetonitrile. In aqueous solutions the rate law is -d[MnO4]/dt = kH2O[RuIV][MnO4-] = (kx + (ky)/(Ka)[H+])[RuIV][MnO4-], kx = (1.49 +/- 0.09) x 101 M-1 s-1 and ky = (5.72 +/- 0.29) x 104 M-1 s-1 at 298.0 K and I = 0.1 M. The terms kx and ky are proposed to be the rate constants for the oxidation of RuIV by MnO4- and HMnO4, respectively, and Ka is the acid dissociation constant of HMnO4. At [H+] = I = 0.1 M, DeltaH and DeltaS are (9.6 +/- 0.6) kcal mol-1 and -(18 +/- 2) cal mol-1 K-1, respectively. The reaction is much slower in D2O, and the deuterium isotope effects are kx/kxD = 3.5 +/- 0.1 and ky/kyD = 5.0 +/- 0.3. The reaction is also noticeably slower in H218O, and the oxygen isotope effect is kH216O/kH218O = 1.30 +/- 0.07. 18O-labeled studies indicate that the oxygen atom gained by RuIV comes from water and not from KMnO4. These results are consistent with a mechanism that involves initial rate-limiting hydrogen-atom abstraction by MnO4- from coordinated water on RuIV. In acetonitrile the rate law is -d[MnO4-]/dt = kCH3CN[RuIV][MnO4-], kCH3CN = 1.95 +/- 0.08 M-1 s-1 at 298.0 K and I = 0.1 M. DeltaH and DeltaS are (12.0 +/- 0.3) kcal mol-1 and -(17 +/- 1) cal mol-1 K-1, respectively. 18O-labeled studies show that in this case the oxygen atom gained by RuIV comes from MnO4-, consistent with an oxygen-atom transfer mechanism.  相似文献   

13.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

14.
The oxygen-atom-transfer (OAT) reactivity of [LiPrMoO2(OPh)] (1, LiPr=hydrotris(3-isopropylpyrazol-1-yl)borate) with the tertiary phosphines PEt3 and PPh2Me in acetonitrile was investigated. The first step, [LiPrMoO2(OPh)]+PR3-->[LiPrMoO(OPh)(OPR3)], follows a second-order rate law with an associative transition state (PEt3, DeltaH not equal=48.4 (+/-1.9) kJ mol-1, DeltaS not equal=-149.2 (+/-6.4) J mol-1 K-1, DeltaG not equal=92.9 kJ mol-1; PPh2Me, DeltaH not equal=73.4 (+/-3.7) kJ mol-1, DeltaS not equal=-71.9 (+/-2.3) J mol-1 K-1, DeltaG not equal=94.8 kJ mol-1). With PMe3 as a model substrate, the geometry and the free energy of the transition state (TS) for the formation of the phosphine oxide-coordinated intermediate were calculated. The latter, 95 kJ mol-1, is in good agreement with the experimental values. An unexpectedly large O-P-C angle calculated for the TS suggests that there is significant O-nucleophilic attack on the P--C sigma* in addition to the expected nucleophilic attack of the P on the Mo==O pi*. The second step of the reaction, that is, the exchange of the coordinated phosphine oxide with acetonitrile, [LiPrMoO(OPh)(OPR3)]+MeCN-->[LiPrMoO(OPh)(MeCN)]+OPR3, follows a first-order rate law in MeCN. A dissociative interchange (Id) mechanism, with activation parameters of DeltaH not equal=93.5 (+/-0.9) kJ mol-1, DeltaS not equal=18.2 (+/-3.3) J mol-1 K-1, DeltaG not equal=88.1 kJ mol-1 and DeltaH not equal=97.9 (+/-3.4) kJ mol-1, DeltaS not equal=47.3 (+/-11.8) J mol-1 K-1, DeltaG not equal=83.8 kJ mol-1, for [LiPrMoO(OPh)(OPEt3)] (2 a) and [LiPrMoO(OPh)(OPPh2Me)] (2 b), respectively, is consistent with the experimental data. Although gas-phase calculations indicate that the Mo--OPMe3 bond is stronger than the Mo--NCMe bond, solvation provides the driving force for the release of the phosphine oxide and formation of [LiPrMoO(OPh)(MeCN)] (3).  相似文献   

15.
The first presentation of the intra- and intermolecular mechanisms of the C-N interconversions of transition metal alpha-cyanocarbanions is described. A pair of N- and C-bound isomers of isonitrile complex Ru+Cp(NCCH-SO2Ph)(PPh3)(CN-t-Bu) (1) and RuCp[CH(CN)SO2Ph](PPh3)(CN-t-Bu) (2) was synthesized for the mechanistic studies on the N-to-C isomerizations. Structural characterization by X-ray diffractions of 1 and 2 indicated their typical zwitterionic and alpha-metalated structures. The kinetic studies on the irreversible isomerization of 1 to 2 in benzene-d6 at 333-348 K were carried out using 1H NMR spectroscopy, affording the first-order rate constants k1 and the activation parameters DeltaH = 107 +/- 2 kJ.mol-1 and DeltaS = -22 +/- 5 J.K-1.mol-1. The almost identical values of k1 were obtained upon similar treatment of 1 with 4 equiv of external ligands such as PPh3, CH3CN, and t-BuNC at 333 K, indicating that the N-to-C isomerization proceeds in an intramolecular manner without dissociation of a ligand. As a model system for the C-to-N isomerization, the irreversible transformation of RuCp[CH(CN)SO2Ph](PPh3)2 (3) to Ru+Cp(NCCH-SO2Ph)(PPh3)2 (4) was investigated under various reaction conditions. The reaction of 3 at room temperature in THF affords the coordination dimers (RRu*,SC*,RRu*,SC*)-{RuCp[CH(CN)SO2Ph](PPh3)}2 (5) stereoselectively, and its distorted mu2-C,N-bound structure was determined by X-ray analysis. The reaction profiles for the isomerization of 3 includes the generation- and temperature-dependent decays of dimeric species 5 and its diastereomer 6, which strongly suggests that the intra- and intermolecular pathways are included in the C-to-N isomerization. The intramolecular process of the C-to-N isomerization of 3 has been confirmed by the kinetic studies on the isomerization of 3 with excess amount of PPh3 in benzene-d6 at 333-348 K which afford the first-order kinetics with the activation parameters of DeltaH = 121 +/- 1 kJ.mol-1 and DeltaS = 42 +/- 4 J.K-1.mol-1. Treatment of 5 with PPh3 in boiling benzene gives rise to the quantitative formation of N-bound complex 4. The controlled kinetic experiments on the cleavage of 5 with PPh3 have concluded that the cleavage of 5 with PPh3 proceeds via simultaneous C-Ru and N-Ru bond scissions, indicating the temperature-dependent participation of intermolecular process in the C-to-N isomerization of 3.  相似文献   

16.
Addition of isonicotinic acid NC(5)H(4)CO(2)H (or isonicH) to [Pt(dppf)(MeCN)(2)](2+)2OTf(-)(dppf = 1,1'-bis(diphenylphosphino)ferrocene, OTf = triflate) affords a mixture of the homometallic molecular square [Pt(4)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 1 and its precursor intermediate [Pt(dppf)(eta(1)-NC(5)H(4)CO(2)H)(2)](2+)2OTf(-), 2. The latter captures [Pd(dppf)(MeCN)(2)](2+)2OTf(-) to give a heterometallic square, [Pt(2)Pd(2)(dppf)(4)(mu-O(2)CC(5)H(4)N)(4)](4+)4OTf(-), 3. Slight skeletal modification of the ligand leads to different assemblies. This is illustrated by the addition of NC(5)H(4)CH(2)CO(2)H.HCl to [Pt(dppf)(MeCN)(2)](2+)2OTf(-) to give [PtCl(dppf)(NC(5)H(4)CH(2)CO(2)H)](+)OTf(-), 4, which reacts with another equivalent of AgOTf to yield the dibridged complex [Pt(2)(dppf)(2)(mu-NC(5)H(4)CH(2)CO(2))(2)](2+)2OTf(-), 5. All complexes, with the exception of , have been structurally characterized by single-crystal X-ray crystallography. Complexes 2 and 4 are potential precursors to further molecular topologies.  相似文献   

17.
Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris(alpha-diimine) complexes. FeII(H2bip) (iron(II) tris[2,2'-bi-1,4,5,6-tetrahydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2'-bi-2-imidazoline]diperchlorate) both transfer H* to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO, DeltaG degrees = -0.3 +/- 0.2 kcal mol-1, DeltaH degrees = -9.4 +/- 0.6 kcal mol-1, and DeltaS degrees = -30 +/- 2 cal mol-1 K-1. For FeII(H2bim) + TEMPO, DeltaG degrees = 5.0 +/- 0.2 kcal mol-1, DeltaH degrees = -4.1 +/- 0.9 kcal mol-1, and DeltaS degrees = -30 +/- 3 cal mol-1 K-1. The large entropy changes for these reactions, |TDeltaS degrees | = 9 kcal mol-1 at 298 K, are exceptions to the traditional assumption that DeltaS degrees approximately 0 for simple HAT reactions. Various studies indicate that hydrogen bonding, solvent effects, ion pairing, and iron spin equilibria do not make major contributions to the observed DeltaS degrees HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron-transfer half-reaction entropy, |DeltaS degrees Fe(H2bim)/ET| = 29 +/- 3 cal mol-1 K-1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+...ONH2 left arrow over right arrow [FeII(H2N=CHCH=NH2)2(Hbim)]2+...HONH2. The discovery that DeltaS degrees HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron-transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition-metal centers are involved.  相似文献   

18.
The preparation and characterization of two new neutral ferric complexes with desolvation-induced discontinuous spin-state transformation above room temperature are reported. The compounds, [Fe(Hthpy)(thpy)].CH3OH.3H2O (1) and [Fe(Hmthpy)(mthpy)].2H2O (2), are low-spin (LS) at room temperature and below, whereas their nonsolvated forms are high-spin (HS), exhibiting zero-field splitting. In these complexes, Hthpy, Hmthpy, and thpy, mthpy are the deprotonated forms of pyridoxal thiosemicarbazone and pyridoxal methylthiosemicarbazone, respectively; each is an O,N,S-tridentate ligand. The molecular structures have been determined at 100(1) K using single-crystal X-ray diffraction techniques and resulted in a triclinic system (space group P1) and monoclinic unit cell (space group P21/c) for 1 and 2, respectively. Structures were refined to the final error indices, where RF = 0.0560 for 1 and RF = 0.0522 for 2. The chemical inequivalence of the ligands was clearly established, for the "extra" hydrogen atom on the monodeprotonated ligands (Hthpy, Hmthpy) was found to be bound to the nitrogen of the pyridine ring. The ligands are all of the thiol form; the doubly deprotonated chelates (thpy, mthpy) have C-S bond lengths slightly longer than those of the singly deprotonated forms. There is a three-dimensional network of hydrogen bonds in both compounds. The discontinuous spin-state transformation is accompanied with liberation of solvate molecules. This is evidenced also from DSC analysis. Heat capacity data for the LS and HS phases are tabulated at selected temperatures, the values of the enthalpy and entropy changes connected with the change of spin state were reckoned at DeltaH = 12.5 +/- 0.3 kJ mol-1 and DeltaS = 33.3 +/- 0.8 J mol-1 K-1, respectively, for 1 and DeltaH = 6.5 +/- 0.3 kJ mol-1 and DeltaS = 17.6 +/- 0.8 J mol-1 K-1, respectively, for 2.  相似文献   

19.
A Rh-catalyzed, homogeneous hydrogenation of the imine, PhCH(2)N=CHPh, is shown to involve a Rh-imine-amine species that subsequently activates H(2), the amine (benzylamine) being formed via a Rh-catalyzed hydrolysis of the imine by adventitious water. The imine-amine complex, cis-(Rh[P(p-tolyl)(3)](2)(PhCH(2)N=CHPh)(NH(2)CH(2)Ph))PF(6) (2b), is structurally characterized, and the solution (1)H NMR data reveal inequivalent NH(2) protons.  相似文献   

20.
The new bifunctional ligands Ph(2)PCH[double bond]CPh[OP(O)(OR)(2)] (1) (1a, R = Et; 1b, R = Ph) represent the first examples of P,O derivatives resulting from the association of a phosphine moiety and an enolphosphate group. The Z stereochemistry about the double bond provides a favorable situation for these ligands to act as P,O-chelates. Neutral and cationic Pd(II) complexes have been synthesized and characterized, in which 1a or 1b acts either as a P-monodentate ligand or a P,O-chelate, via coordination of the oxygen atom of the P[double bond]O group. In the latter case, it has been observed that phosphines 1a and 1b can display a hemilabile behavior, owing to successive dissociation and recoordination of the O atom. Competition experiments revealed that phosphine 1a presents a higher chelating ability than 1b, a feature ascribed to the more electrodonating properties of the ethoxy groups in 1a compared to the phenoxy groups in 1b. P,O-Chelation affords seven-membered metallocycles, which is unusual for P,O-chelates. Complexes trans-[PdCl(2)[Ph(2)PCH[double bond]C(Ph)OP(O)(OPh)(2)](2)] (2b), [PdCl[Ph(2)PCHdouble bond]C(Ph)OP(O)(OEt)(2)](mu-Cl)](2) (3a), [complex--see text] (8a'), and [complex--see text] (10a) have been structurally characterized. Interestingly, the seven-membered rings in 8a' and 10a adopt a sofa conformation with the double bond lying almost perpendicular to the plane containing the Pd, the two P, and the two O atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号