首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polyvinylpyrrolidone is synthesized in supercritical carbon dioxide at a pressure of 20 MPa and a temperature of 65°C. Polyvinylpyrrolidone films are impregnated with the organic complex silver 1,5-(cyclooctadiene)-1,1,1,5,5,5-hexafluoroacetyl acetonate, and the metal is subsequently reduced by hydrogen. The chemical structure and structure of nanometallopolymer composites are investigated by SAXS, transmission electron microscopy, FTIR and UV spectroscopy, and X-ray fluorescent analysis. It is shown that the impregnation with the complex and the reduction of the complex give rise to Ag(0) nanoparticles with a predominant size on the order of 1 nm.  相似文献   

2.
Summary.  A complete characterization of nanostructures has to deal both with electronic structure and dimensions. Here we present the characterization of TiO2 nanoparticles of controlled size prepared by aerosol methods. The electronic structure of these nanoparticles was probed by X-ray absorption spectroscopy (XAS), the particle size by atomic force microscopy (AFM). XAS spectra show that the particles crystallize in the anatase phase upon heating at 500°C, whereas further annealing at 700°C give crystallites of 70% anatase and 30% rutile phases. Raising the temperature to 900°C results in a complete transformation of the particles to rutile. AFM images reveal that the mean size of the anatase particles formed upon heating at 500°C is 30 nm, whereas for the rutile particles formed upon annealing at 900°C 90 nm were found. The results obtained by these techniques agree with XRD data. Received October 5, 2001. Accepted (revised) December 6, 2001  相似文献   

3.
高分散 Ru/MMT 催化剂的制备及其催化喹啉加氢性能   总被引:2,自引:0,他引:2  
 通过简单的离子交换法制备出高分散的蒙脱土 (MMT) 负载 Ru 催化剂, 采用 X 射线衍射、X 射线光电子能谱、程序升温还原和高分辨透射电子显微镜等手段对催化剂进行了表征. 结果表明, 金属 Ru 在蒙脱土层间高度分散, Ru 的平均粒径约 2 nm. 在喹啉加氢反应中, 该催化剂显示出很高的反应活性和选择性. 在 2 MPa 和 60 °C 的温和条件下, 以水为溶剂时, Ru/MMT 催化喹啉加氢生成 1,2,3,4-四氢喹啉的选择性高于 96.4%, 喹啉转化率达 99.2%. 当温度升高到 140 °C、压力增加到 3 MPa 时, 不需要补加催化剂就可以将喹啉一步加氢生成十氢喹啉, 选择性高达 98.1%.  相似文献   

4.
Abstract

High purity (~99%) nano silica with an average particle size of ~100 nm was extracted at pH 3 at 650°C from a natural resource, rice husk, using alkaline extraction followed by acid precipitation method. Using nano silica as a precursor, silicon (Si) nanoparticles have been synthesized by high-temperature magnesiothermic reduction method. The prepared sample was characterized by X-ray diffraction, particle size analyzer, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray fluorescence analyzer, and UV–Vis spectroscopy. The comprehensive characterization studies indicate the pure phase formation of Si and the variation of particle size from 70 nm to 100 nm for samples synthesized at different sintering temperatures. Moreover, the silicon nanoparticles produced at 850°C have pure phase formation, high purity, and good absorption peaks. The efficiency calculated through IV characteristics is found to be increasing in silicon and ruthenium combination (2.67%), which is better than that achieved from the conventional solar cells. The produced silicon nanoparticles could be applied as an anode material for solar cell fabrication.  相似文献   

5.
Cu–Ag nanoparticles have been successfully synthesized by one-pot solvothermal treatment of a mixture of AgNO3 and Cu(OAc)2·H2O in ethylene glycol solution at 180 °C for 10 h. The samples were characterized by UV–visible absorption, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that Cu–Ag nanoparticles and a small amount of phase-separated Cu–Ag alloy nanoparticles with an average diameter of 100 ± 30 nm were synthesized by the solvothermal treatment procedure. The mechanism of formation is discussed.  相似文献   

6.
Thermal behavior of highly crystalline ε-Fe2O3 nanoparticles of different apparent crystallite sizes was characterized using thermogravimetry, differential thermal analysis, and analysis of evolved gas by mass spectrometry. Phase composition of the samples was monitored ex situ by X-ray powder diffraction. The results show that the thermal stability of this metastable iron oxide polymorph decreases with increasing particle size. For the particle diameter of 19(2) nm, the transformation temperature was equal to 794(5) °C, while for 28(2) nm only 755(10) °C. Surface of the nanoparticles contained adsorbed water and carbon dioxide. Elimination of these species proceeds in two steps. Water is removed at temperatures below 200 °C and CO2 in the temperature range between 200 and 450 °C.  相似文献   

7.
In the present work alkaline iron oxide nanoparticles are synthesized by a novel solvo thermal approach and characterized exhaustively by various complementary techniques. Field emission scanning electron microscopy (FESEM) studies reveal that the size of nanoparticles is in the range of 31.5 nm to 96.9 nm. Energy-dispersive X-ray spectroscopy spectral analysis reveals the presence of oxygen, carbon, iron, and sodium. The X-ray diffraction studies confirm the formation of tetragonal NaFeO2 as the major phase along with orthorhombic NaFeO2·H2O and rhombohedral FeCO3 (siderite) as the minor phases. Fourier transform infrared spectroscopy exhibits peaks due to the stretching and bending vibrations of O-H, C=O, CH3-N, CH3, C-H, C-N, and Fe-O groups. Differential scanning calorimetry (DSC) results display an endothermic peak at 100.85°C and a very small endothermic peak at 791.56°C with 819.73 mJ and 349.28 mJ energies respectively. These DSC peaks can be correlated with thermal gravimetric analysis (TGA) peaks representing 31.04% weight loss and 7.70% weight loss respectively in the sample at around 160°C and 980°C respectively.  相似文献   

8.
Perovskite-type nanomaterials of the compositions La1-yCayMn1-xB″xO3±δ with B’’ = Ni, Fe; x = 0.2, 0.5 and y = 0.4, 0.25 were prepared using two different preparation routes (synthesis by precipitation and the PVA/sucrose method) at 500 °C–700 °C. The calcined products of the syntheses were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and physisorption measurements. The materials from the PVA/sucrose method contain particles with diameters from 33 nm to 48 nm, generate specific surface areas up to 33 m2/g and form pure compared to 45 nm–93 nm and up to 18 m2/g from precipitation method which contain a significant amount of sodium ions. The agglomeration process was analyzed for one nanomaterial (B’’ = Fe, x = 0.2, y = 0.4) from the PVA/sucrose method using temperature dependent XRD showing only a slight growth (4.3%) of nanoparticles at 600 °C. The materials from the PVA/sucrose method turned out to be more suitable as electrode materials in electrochemical applications (SOFC, sensors) because of smaller particle sizes, higher specific surface areas and purity.  相似文献   

9.
In this work, we introduce a modified novel silica sol–gel process to synthesize hexagonal close-packed (hcp) and face-centered cubic (fcc) nickel (Ni) nanoparticles supported on amorphous carbon and silica matrix. The supporting of amorphous carbon and silica can prevent the Ni nanoparticles from aggregating and being oxided which would result in the loss of their magnetism and dispersibility. The phase structure of the Ni nanoparticles which were obtained from the gels pyrolyzed from 250 to 350 °C is hcp structure, whereas that of the Ni nanoparticles pyrolyzed at 750 °C is fcc structure. The grain sizes of the hcp Ni nanoparticles calcined at 250 °C range from 5 to 20 nm in diameter, and that of the fcc Ni nanoparticles calcined at 750 °C range in 7–35 nm. The studies of magnetic properties of the hcp and fcc Ni nanoparticles show that both have quite different magnetic behaviors.  相似文献   

10.
Magnesium nanopowder has attracted many interests in the recent years, which has a very difficult and costly synthesis process because of its high activity. In this work, magnesium nanoparticles stabilized with amorphous carbon (Mg–C nanoparticles) were synthesized by submerged arc discharge technique in kerosene. The arc discharge was generated between two electrodes of magnesium at the arc current of 1 A and arc voltage of 50 V. Mg–C nanoparticles were characterized by various techniques. Dynamic light scattering result indicated that size of magnesium nanoparticles is about 35 nm. X-ray diffraction showed that the produced sample consisted of hexagonal magnesium and amorphous carbon and there was no presence of magnesium oxides in the pattern. Field emission scanning electron microscopy and transmission electron microscopy results illustrated that the sample has morphology of agglomerated nanospheres. Energy dispersive X-ray spectroscopy demonstrated formation of 57 percent magnesium and 43 percent carbon. Differential scanning calorimetry analysis showed that the amorphous carbon increased ignition temperature of nanoparticles by 180 °C compared to pure magnesium micron-sized powder. Therefore, Mg–C nanoparticles can have many applications in different fields similar to magnesium nanopowders. However, by producing Mg–C nanoparticles, there is no need for vacuum chamber or inert gases during production and after that, since amorphous carbon protects magnesium nanoparticles from oxidation.  相似文献   

11.
Manganese dioxide loaded activated carbon adsorbents (MnO2/AC) were prepared and characterized by N2 adsorption-desorption, BET method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM). Effects of preparation conditions and adsorption conditions on desulfurization performance of the adsorbents were studied in a fixed-bed adsorption apparatus. Experimental results show that the surface area and pore volume of MnO2/AC decreased compared with the unmodified activated carbon, but the adsorption capacity to H2S was improved greatly. A suitable H2S removal activity was obtained with manganese dioxide to activated carbon ratio of 1.1: 1 and the calcination temperature of 250°C. At the adsorption temperature of 40°C and gas flow rate of 20 mL/min, the H2S saturation capacity and H2S removal rate reached up to 713.25 mg/g and 89.9%, respectively.  相似文献   

12.
In the present investigation, a novel synthetic zinc zirconate nanocomposites were prepared by a sol–gel technique using a very stable sol containing zirconium acetylacetonate, zinc acetate, monoethanolamine, and 1,3-propanediol as chelating agent. Thermal analysis results indicated that the decomposition of zinc zirconate precursors occurred at 225 and 234 °C. The influence of thermal annealing (temperatures and duration) on their structural properties has been studied by means of X-ray diffraction and Fourier transform-infrared spectroscopy techniques. The results indicated that a higher percent of zinc zirconate is formed at 800 °C and reached maximum at 1,000 °C in 120 min. The morphology, composition, and bandgap properties of zinc zirconate nanoparticles were characterized by transmission electron microscope, scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy, and ultraviolet diffiuse reflectance. The SEM observation showed that average grain size of zinc zirconate nanopowders was 58 nm. The optical results revealed maximum absorbances at 394, 413, and 438 nm for ZnZrO3 sample annealed at 400, 800, and 900 °C for 30 min, respectively. This is an indication that the nanopowder can absorb lights in the higher wavelength.  相似文献   

13.
Maghemite (γ-Fe2O3) is a metastable iron oxide phase and usually undergoes fast phase transition to hematite at elevated temperatures (>350 °C). Maghemite nanoparticles were synthesized by the polyol method and then intercalated into a highly swollen (>100 nm separation) nematic phase of hectorite. A composite of maghemite nanoparticles sandwiched between nanosheets of synthetic hectorite was obtained. The confinement of the nanoparticles hampered Ostwald ripening up to 700 °C and consequently the phase transition to hematite is suppressed. Only above 700 °C γ-Fe2O3 nanoparticles started to grow and undergo phase transition to α-F2O3. The structure and the phase transition of the composite was evaluated using X-ray diffraction, TEM, SEM, physisorption, TGA/DSC, and Mößbauer spectroscopy.  相似文献   

14.
Ultrafine Ru nanoparticles (RuNPs) supported on nitrogen-doped layered double hydroxide (Ru/LDH) were in situ prepared by nitrogen glow discharge plasma (nGDP) without adding any chemical reducing agents or stabilizers. The as-synthesized Ru/LDH catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. During treatment with nGDP, the reduction of Ru3+ and nitrogen doping were carried out simultaneously. The resulting RuNPs has a narrow particle size distribution of 1.41–2.61 nm, an ultrafine average particle size of 1.86 nm, and were uniformly dispersed on nitrogen-doped LDH. The complexation of RuNPs and O/N-containing functional groups on LDH improve the catalytic activity and stability of Ru/LDH. The catalyst exhibited excellent properties for the hydrogenation reaction of N-ethylcarbazole (NEC). The conversion of NEC and the selectivity of 12H-NEC were 100% and 99.06% for 1 hr at 120°C and 6 MPa H2, respectively. The mass hydrogen storage capacity was 5.78 wt%. The apparent activation energy was 35.78 kJ/mol.  相似文献   

15.
The composition and electronic structure of cadmium sulfide (CdS) nanoparticles formed by the Langmuir–Blodgett (LB) technique on clean silicon wafers and the surface of vertically aligned carbon nanotube (CNT) arrays are studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The samples were annealed in a vacuum at 175 °C and 225 °C to remove the organic matrix of the LB film. From the analysis of the XPS data the increased concentration of sulfate groups on the surface of CdS nanoparticles formed on CNTs and the electron density transfer from CdS to CNTs are determined. An increase in the LB film annealing temperature causes an increase in the degree of crystallinity and the CdS crystallite size and a decrease in the photoluminescence intensity of a CdS–CNT hybrid.  相似文献   

16.
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol–gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600°C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5–42.5 nm while the thickness of SiO2 shell attained 1.5–3.5 nm approximately.  相似文献   

17.
The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.  相似文献   

18.
Polyacrylonitrile(PAN) nanofibers with average diameter of 300 nm were produced by electro-spinning. The nanofibers were stabilized at different temperatures in the range of 180-270 ℃ in several duration times and heating rates. Fourier transforms infrared(FTIR) spectroscopy, differential scanning calorimetry(DSC) and X-ray diffraction(XRD) analyzing techniques were employed to measure the extent of stabilization reaction. By all procedures, the ranges of temperature and duration time recommended were about 250-270 ℃ and 1-2 h, respectively. Increasing the activation temperature from 800 ℃ to 1200 ℃ caused porosity and pore volume development up to 60% and 0.532 cm3/g, respectively. Pore width of all samples was calculated to be about 0.7 nm confirming micro-pore structure of the produced PAN based activated carbon nanofibers. Comparing dye adsorption for different adsorbents including chitin and granular activated carbon(GAC) showed the highest efficiency for the produced activated carbon nanofibers(ACNFs).  相似文献   

19.
MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g?1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.  相似文献   

20.
This work reports the study the structure, optical and magnetic properties of LaFeO3 nanoparticles synthesized by the polymerized complex method. The LaFeO3 nanoparticles were successfully obtained from calcination of the precursor at different temperatures from 750 to 1,050 °C in air for 2 h. The calcined LaFeO3 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Visible spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and vibrating sample magnetometry. The XRD and TEM results showed that all LaFeO3 samples had a single phase nature with the orthorhombic structure. The estimated crystallite sizes were in the range of 44.5 ± 2.4–74.1 ± 4.9 nm. UV–Vis spectra showed strong UV and Vis absorption with small band gap energy. The valence states of Fe ions were in the Fe3+ and Fe4+ state, as confirmed by XPS and XANES results. The weak ferromagnetic behavior with specific saturation magnetization of 0.1 emu/g at 10 kOe was obtained for the small particle of 44.5 ± 2.4 nm. The uncompensated spins at the surface was proposed as playing a part in the magnetic properties of small sized LaFeO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号