首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

2.
The cluster aqua complexes [Mo3(MCl)Q4(H2O)9]3+ (M = Pd or Ni) in hydrochloric acid solutions induce isomerization of the hydrophosphoryl compounds (HO)2P(O)H, (HO)P(O)H2, PhP(O)(OH)H, and Ph2P(O)H into the hydroxo tautomers P(OH)3, HP(OH)2, PhP(OH)2, and Ph2P(OH), which are stabilized by coordination of the phosphorus atom to the Pd or Ni atoms. The reactions were studied by 31P NMR and UV-Vis spectroscopy. The kinetics of the reactions of phosphorous acid with [Mo3(PdCl)Q4(H2O)9]3+ was investigated by spectrophotometry. The [Mo3(Pd(PhP(OH)2))S4(H2O)2Cl7]3− complex was isolated as a supramolecular adduct with cucurbit [8]uril, and the [Mo3(Ni(P(OH)3))S4(H2O)8Cl]3+ complex was isolated as an adduct with cucurbit [6]uril. The structures of both compounds were established by X-ray diffraction analysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 606–613, March, 2005.  相似文献   

3.
New dinuclear complexes of the types [Ni2(L)(H2O)2] and [Ni2(L)(H2O)6] [H4L = N,N′‐bis(carboxymethyl) dithiooxamide (H4GLYDTO), N,N′‐bis(1‐carboxyethyl) dithiooxamide (H4ALADTO), N,N′‐bis(1‐carboxy‐2‐methylpropyl) dithiooxamide (H4VALDTO) and N,N′‐bis(1‐carboxy‐3‐methylbutyl) dithiooxamide (H4LEUDTO)] have been prepared and characterized by IR and electronic absorption spectroscopy, and the structure of [Ni2(ALADTO)(H2O)6] crystals has been determined by single crystal X‐ray analysis. This compound is composed of discrete dinuclear units in which two NiII atoms with NO4S kernels are linked by a single [ALADTO]4– group that coordinates through its carboxylato oxygen, amino nitrogen and thiolato sulphur atoms. In each dimer unit the two nickel(II) ions in distorted octahedral coordination are separated by 5.863(2) Å The temperature dependence of the magnetic susceptibility of the new compounds was measured over the range 2 to 300 K. In the complexes of [GLYDTO]4– and [ALADTO]4– the two Ni atoms are antiferromagnetically coupled, with J = –23.51(4) and –20.95(8) cm–1, respectively. By constrast, [Ni2(VALDTO)(H2O)2], [Ni2(VALDTO)(H2O)6] and [Ni2(LEUDTO)(H2O)2] remain paramagnetic down to 2 K, with magnetic moment values between 2.8 and 3.3 M.B.  相似文献   

4.
Three novel hexa‐Ni‐substituted Dawson phosphortungstates [Ni6(en)3(H2O)63‐OH)3(H3P2W15O56)] ? 14 H2O ( 1 ), [Ni(enMe)2(H2O)][Ni6(enMe)33‐OH)3(H2O)6(HP2W15O56)] ? 10 H2O ( 2 ), and [Ni(enMe)2]3[Ni(enMe)2(H2O)][Ni(enMe)(H2O)2][Ni6(enMe)33‐OH)3(Ac)2(H2O)(P2W15O56)]2 ? 6 H2O ( 3 ) (en=ethylenediamine, enMe=1, 2‐diaminopropane, Ac=CH3COO?) have been made under hydrothermal conditions and were characterized by IR spectroscopy, elemental analysis, diffuse reflectance spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The common structural features of compounds 1 – 3 contain the similar hexa‐Ni‐substituted Dawson polyoxometalate (POM) units that can be viewed as a [Ni63‐OH)3]9+ cluster capping on a [P2W15O56]12? fragment. Compounds 1 and 2 are two isolated clusters, whereas compound 3 is the first 3D POM framework constructed from hexa‐Ni‐substituted Dawson POM units and Ni(enMe) complex bridges. The preparations of compounds 1 – 3 not only indicate that triangle coplanar Ni6 clusters are very stable fragments in both trivacant Keggin and trivacant Dawson POM systems, but also offer that the hydrothermal technique can act as an effective strategy for making novel Dawson‐type high‐nuclear transition‐metal cluster substituted POMs by combination of lacunary Dawson precusors with transition‐metal cations in the tunable role of organic ligands. In addition, magnetic measurements illustrate that there exist overall ferromagnetic interactions in compound 3 .  相似文献   

5.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

6.
The compounds [Ni(H2O)2(En)2][{Ni(En)2}Re6S8(OH)6] · 7H2O (I), [{Cu(En)2}Re6S8(H2O)2(OH)4] · 4H2O (II), and [Ni(H2O)2(En)2]0.5[Re6Se8(H2O)3(OH)3] · 10H2O (III) were synthesized by layering aqueous solutions of Ni(En)2Cl2 or Cu(En)2Cl2 (En is ethylenediamine) onto aqueous solutions of the potassium salts of the corresponding octahedral chalcohydroxo rhenium cluster complexes [Re6Q8(OH)6]4− (Q = S, Se). The structure of the obtained compounds was determined by X-ray diffraction analysis.  相似文献   

7.
Three new polynuclear compounds based on a dicarboxylic acid ligand are reported. In particular, two Cu(II) coordination compounds, [Cu2(H2O)6(Hbzlidp)2](CF3SO3)2·2H2O (1) and [Cu(NO3)(Hbzlidp)] (2) (bzlidp2? = N-benzyliminodipropionate anion), and a Ni(II) dinuclear compound, [Ni2(H2O)4(bzlidp)2] (3), were synthesized and characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Different structures were obtained depending on the reaction conditions. The structural analyses reveal that 1 was formed by dinuclear [Cu2(H2O)6(Hbzlidp)2]2+ units built by two copper(II) ions joined through two Hbzlidp? ligands, while 2 was formed by pairs of Cu(II) centers bridged by four syn,syn carboxylate groups to generate “paddle wheel” units. The dinuclear copper units are arranged in a rhombus type grid, in a 2-D layer structure. In both cases, the N was protonated and not coordinated to the metal center. Compound 3 was formed by [Ni2(H2O)4(bzlidp)2] neutral dinuclear units, with octahedral Ni(II) centers. Solution studies of the ligand–M(II) systems (M(II) = Mn, Co, Ni, Cu, Zn, Cd, and Pb) were also carried out.  相似文献   

8.
The processes of formation of iron(II) complexes in aqueous glycine solutions in the pH range of 1.0–8.0 at 298 K and ionic strength of 1 mol/L (NaClO4) are studied using Clark and Nikolskii’s oxidation potential method. The type and number of coordinated ligands, the nuclearity, and the total composition of the resulting complexes are determined. The following complex species are formed in the investigated system: [Fe(OH)(H2O)5]+, [FeHL(H2O)5]2+, [Fe(HL)(OH)(H2O)4]+, [Fe(OH)2(H2O)4]0, [Fe2(HL)2(OH)2(H2O)8]2+, and [Fe(HL)2(H2O)4]2+. Their formation constants are calculated by the successive iterations method using Yusupov’s theoretical and experimental oxidation function. The model parameters of the resulting coordination compounds are determined.  相似文献   

9.
Three high‐nuclearity Ni‐substituted polyoxotungstates (POTs)—[Ni(enMe)2(H2O)2]2[Ni(H2O)6]2‐ [Ni(enMe)2][Ni(H2O)2]1.5[HNi20X4W34‐ (OH)4O136(H2O)6(enMe)8] ? 11 H2O ( 3 ), [Ni(en)2(H2O)]2[H8Ni21X4W34(OH)4‐ O136(en)10(H2O)5] ? 22 H2O ( 4 ), and [Ni‐(enMe)2]2[H6Ni22X4W34(OH)4O136(H2O)6(enMe)10] ? 18 H2O ( 5 ), in which en=ethylenediamine, enMe=1,2‐diaminopropane, X=0.5 P+0.5 Ge—were made under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The structures of 3 – 5 can be viewed as novel derivatives of [H6Ni20P4W34(OH)4O136(enMe)8‐ (H2O)6] ? 12 H 2O ( 1 ) and [Ni(en)2‐ (H2O)]2[H8Ni20P4W34(OH)4O136(en)9‐ (H2O)4] ? 16 H 2O ( 2 ), which both contain 20 nickel ions per structural unit. Compound 3 is the first example of a 1D cluster chain constructed from Ni20‐substituted polyanions [HNi20X4‐ W34(OH)4O136(H2O)6(enMe)8]11? and [Ni(enMe)2]2+ bridges. Compound 4 is a novel cluster–organic chain built by Ni21‐substituted polyanions [H8Ni21X4W34(OH)4O136(en)10(H2O)5]4? and en molecule bridges. Compound 5 is a discrete POT with 22 Ni centers, and is not only the largest nickel‐substituted POT, but also contains the highest number of nickel ions in one polyanion to date. Magnetic measurements illustrate that overall ferromagnetic interactions exist in 1 – 5 . The magnetic behavior of 1 and 2 was theoretically simulated by the MAGPACK magnetic program package.  相似文献   

10.
Different kinds of counterions (such as NO3, ClO4, and Cl) play a special role in controlling the framework of coordination compounds. Using this strategy, 5‐aminotetrazole‐1‐propionic acid (Hatzp) was selected to react with praseodymium(III) nitrate or perchlorate in the same solvent system, producing two different coordination compounds, [Pr2(atzp)4(H2O)8] · 2NO3 · 2H2O ( 1 ) and [Pr2(atzp)6(H2O)2] · H2O ( 2 ). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. X‐ray diffraction analysis revealed that compound 1 displays a dinuclear structure, whereas 2 shows a one dimensional zigzag chain framework. Furthermore, the luminescence properties of compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

11.
Acidic urates [Mn(HL)2] · H2O, [FeOH(HL)2]2 · 4H2O, [Co(HL)2(H2O)2] · 2H2O, and [Ni(HL)2(H2O)2] · 2H2O (H2L is uric acid) were synthesized and their structures and physicochemical properties were studied using IR spectroscopy, diffuse reflection spectroscopy, DTA, and magnetochemistry methods. The metals were shown to coordinate the urate anion through oxygen and nitrogen atoms. The [FeOH(HL)2]2 · 4H2O complex has a dimeric structure.  相似文献   

12.
A crystal of Ni(HL)2[Ni(Malon)2(H2O)2]2 · 3.51H2O (I), which is built of [Ni(HL)2]2+ cations (HL is thiosemicarbazide), [Ni(Malon)2(H2O)2]2? anions (H2 Malon is malonic acid), and molecules of crystal water, has been synthesized and studied by IR spectroscopy, thermogravimetry, and X-ray diffraction. Structural units of complex I are linked by electrostatic interactions and numerous hydrogen bonds. The unit cell parameters b = 7.233(1) Å, c = 24.426(5) Å, β = 127.98(3)°, space group C2/c, Z = 8. The polyhedron of the nickel atom in [Ni(HL)2]2+ cations is a cis-square that is slightly distorted within ~10°. Ligands HL are bidentately chelately coordinated (via N and S) to the nickel atom with the closure of near planar five-membered chelate rings. The malonate groups in [Ni(Malon)2(H2O)2]2? anions are bidentately chelately coordinated with the formation of six-membered non-planar chelate rings. The coordination of the central atom is complemented to an octahedron with two H2O molecules. The bond lengths in cations are 1.924(4) and 1.912(4) Å (Ni-N) and 2.144(1) and 2.150(2) Å (Ni-S), and the bond lengths in anions are 2.003–2.046(3) Å (Ni-O) and 2.113(4) and 2.122(3) Å (Ni-O(w)).  相似文献   

13.
A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.  相似文献   

14.
The coordination compounds of group 12 halides with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen), 2[CdF2(bpy)2]·7H2O (1), [ZnI(bpy)2]+·I3? (2), [CdI2(bpy)2] (3), [Cd(SiF6)H2O(phen)2]·[Cd(H2O)2(phen)2]2+·F·0.5(SiF6)2–·9H2O (4), [Hg(phen)3]2+·(SiF6)2–·5H2O (5), [ZnBr2(phen)2] (6), 6[Zn(phen)3]2+·12Br·26H2O (7) and [ZnI(phen)2]+·I (8), have been synthesized and characterized by X-ray crystallography, IR spectroscopy, elemental and thermal analysis. Structural investigations revealed that metal?:?ligand stoichiometry in the inner coordination sphere is 1?:?2 or 1?:?3. A diversity of intra- and intermolecular interactions exists in structures of 18, including the rare halogen?halogen and halogen?π interactions. The thermal and spectroscopic properties were correlated with the molecular structures of 18. Structural review of all currently known coordination compounds of group 12 halides with bpy and phen is presented.  相似文献   

15.
Three metal complexes with empirical formulae [Mn(theop)2(H2O)4] (1), [Co(theop)2(H2O)4] (2), [Ni(theop)2(H2O)4] (3), (where: theop?=?theophylline) were synthesized and characterized by elemental analysis, FTIR- spectroscopy and thermal decomposition techniques. Their crystal structures were determined by single crystal Xray diffraction analysis. Complexes are isomorphous and crystallise in the monocyclic space group P21/c. Their thermal behavior was studied by TGA methods under non-isothermal condition in air. Upon heating all compounds decompose progressively to metal oxides, which are the final products of pyrolysis. Furthermore, antimicrobial and antioxidant activity of the complexes was examined.  相似文献   

16.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

17.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

18.
Using Ni(Im)62+ (Im = imidazole) as the structural unit, the effects of oxygen-containing anions, such as SO42-, NO3? and CO32- on the structure of water clusters were studied. The crystal structures of three compounds [Ni(Im)6][SO4(H2O)11] (1), [Ni(Im)6][(NO3)Cl(H2O)4] (2), and [Ni(Im)6][CO3(H2O)5] (3) were obtained. Using Mercury-3.8 software to analyze the above three crystal structures, find different anion of water clusters had a significant effect on the supramolecular structure. At the same time, it also significantly influences the number of water molecules in the crystal structure.  相似文献   

19.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

20.
New VO2+, Mn2+, Co2+, Ni2+ Cu2+ and Zn2+ complexes of 2,5-hexanedione bis(isonicotinylhydrazone) [H2L] have been synthesized and characterized. The analyses confirmed the formulae: [VO(L)]·H2O, [Mn2(H2L)Cl2(H2O)6]Cl2, [Co(L)(H2O)2]·2H2O, [Ni(HL)(OAc)]·H2O, [Cu(L)(H2O)2]·2H2O, [Cu(L)]·2H2O and [Zn(L)(H2O)2]. The formulae of [Ni(HL)(OAc)]·H2O, [Zn(L)(H2O)2] and [Mn2(H2L)Cl2(H2O)6]Cl2, are supported by mass spectra. The molecular modeling of H2L is drawn and showed intramolecular hydrogen bonding. The ligand releases two protons during reaction from the two amide groups (NHCO) and behaves as a binegative tetradentate (N2O2); good evidence comes from the 1H NMR spectrum of [Zn(L)(H2O)2]. The ligand has a buffering range 10–12 and pK's of 4.62, 7.78 and 9.45. The magnetic moments and electronic spectra of all complexes provide a square-planar for [Cu(L)]·2H2O, square-pyramidal for [VO(L)]·H2O and octahedral for the rest. The ESR spectra support the mononuclear geometry for [VO(L)]·H2O and [Cu(L)(H2O)2]·2H2O. The thermal decomposition of the complexes revealed the outer and inner solvents where the end product in most cases is metal oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号