首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.  相似文献   

2.
We investigated angular tuning of quasi-phase-matching (QPM) second-harmonic generation (SHG), in order to extend the tunable range of QPM and to combine the advantages of QPM and birefringence phase-matching. The direction of the input fundamental wave vector was detuned from the QPM grating vector along the crystallographic Z-axis of a periodically-poled lithium niobate (PPLN) crystal in the XY- and XZ-planes. A?larger tuning range of SHG was obtained for the detuning in the XZ-plane, continuously shifting the QPM peak of the fundamental wavelength from 1524 to 1595?nm by changing the detuning angle from 0° (parallel to X-axis as conventional QPM) to 23.2°.  相似文献   

3.
Cascaded nonlinear phase shifts may be imposed on the interacting waves during second-harmonic generation (SHG) in a quasi-Phase-matched (QPM) structure, whieh are severe in high-intensity regime and may result in lower conversion efficiency. We propose a configuration of QPM structure with reduced domain-length, which may depress the nonlinear phase shifts to some extent and lead to an improvement on the conversion efficiency. The numerical analyses on the conversion efficiency as well as the relative phase angle are discussed in detail for better understanding of the SHG process.  相似文献   

4.
Ren ML  Ma DL  Li ZY 《Optics letters》2011,36(18):3696-3698
We have demonstrated super quasi-phase matching (QPM) in a super periodically poled lithium niobate (PPLN), which is composed of multiple ordinary PPLN cells. When super QPM is achieved, the slight phase mismatch in each PPLN cell can be further compensated for, and the relevant second harmonic generation is facilitated greatly. This mechanism provides an insightful means to relieve the limitation imposed by sample fabrication inaccuracy and will open up a promising avenue toward highly efficient nonlinear interactions.  相似文献   

5.
Quasi-phase-matched (QPM) GaAs structures, 0.5 mm thick, 10 mm long, and with 61-mum grating periods, were grown by a combination of molecular-beam epitaxy and hydride vapor phase epitaxy. These were characterized by use of mid-IR second-harmonic generation (SHG) with a ZnGeP(2) (ZGP) optical parametric oscillator as a pump source. The SHG efficiencies of QPM GaAs and QPM LiNbO(3) were directly compared, and a ratio of nonlinear coefficients d(14)(GaAs)/d(33) (LiNbO(3))=5.01+/-0.3 was found at 4.1-mum fundamental wavelength. For input pulse energies as low as 50muJ and approximately 60-ns pulse duration, an internal SHG conversion efficiency of 33% was measured in QPM GaAs.  相似文献   

6.
Second harmonic generation (SHG) in a short nonlinear photonic bandgap (PBG) structure coated with distributed Bragg reflector (DBR) mirrors is theoretically investigated by means of an iteration approach that fully considers pump depletion. A total conversion efficiency of about 96% can be obtained in an optimized structure with a size scale of about 0.2 mm and at the modest pump intensity of about 0.133 MW/cm2, which is four orders of magnitude more than that in a quasi-phase-matching (QPM) structure with the same sample length. Such a high conversion efficiency of SHG will greatly facilitate the success of short frequency conversion devices and all-optical integration in nanostructures.  相似文献   

7.
宽带准连续光纤激光在周期极化铌酸锂中倍频特性的研究   总被引:3,自引:2,他引:1  
双包层光纤激光器和非线性光学材料(如周期性极化的铌酸锂晶体,PPLN)相结合,开辟了实用性非线性光学器件的一个新领域。研究了准相位匹配周期性极化反转铌酸锂晶体对宽带准连续光纤激光倍频的温度特性和频谱特性。在理论上,从准相位匹配相位失配关系出发,推导了晶体温度与抽运源中心波长的关系以及温度响应带宽,并和已报道实验结果进行了比较,二者符合得很好。此外,还推导了倍频周期极化铌酸锂晶体对抽运基频光源的响应谱线带宽。在实验上,采用长度20mm,极化周期6.5μm,厚度0.5mm的周期极化铌酸锂晶体光纤激光器准连续宽带输出进行了倍频,获得了在不同控制温度下的倍频光光谱,并对此进行了详细分析。  相似文献   

8.
王健  孙军强  孙琪真 《光子学报》2007,36(6):986-990
基于周期极化反转铌酸锂(PPLN)光波导级联倍频和差频(SHG+DFG)的二阶非线性效应,提出并实验研究了皮秒脉冲的可调谐波长转换以及单信道到双信道的波长转换.信号光采用重复频率为40 GHz,脉宽为1.57 ps的脉冲信号.连续抽运光由光纤环形腔激光器(FRL)提供.不同于传统的SHG+DFG型波长转换,信号光固定在PPLN光波导倍频过程的准相位匹配(QPM)波长处,通过调节抽运光的波长实现了转换空闲光的可调谐输出.当使用两个抽运光时实验观察到了单信道到双信道的波长转换.  相似文献   

9.
Collinear broadband optical parametric generation (OPG) using periodically poled lithium niobate (PPLN) crystals were designed and experimentally demonstrated with the quasi-phase matching (QPM) periods of 21.5, 24.0, and 27.0 μm. The broad gain bandwidth was accomplished by choosing a specific set of the period and the pump wavelength that allows the group velocities of the signal and the idler to match close to the degeneracy point. OPG gain bandwidth and also the spectral region could be controlled by proper design of QPM period and pump wavelength. The total OPG gain bandwidth of 600, 900, and 1200 nm was observed for the PPLN devices with QPM periods of 21.5, 24.0, and 27.0 μm, respectively. We have also observed multiple color visible generation whenever the OPG spectrum was significantly broad. From the visible peaks of the three PPLN samples, it is found that broad gain bandwidth is crucial in the temperature-insensitive collinear simultaneous RGB generation from a single crystal.  相似文献   

10.
《Optics Communications》2003,215(4-6):413-418
During the fabrication of quasi-phase-matched (QPM) devices, errors of periodic structure are usually inevitable. The errors result in the deviation of the actual periodic domain length from the theoretical value. In this paper we numerically analyze the influence of the errors on the degenerate optical parametric amplifier consisting of QPM devices. It is shown that in this case the gains of signal photon number and normalized photon number variance are decreased with respect to those of an ideal QPM device. However, there are no extra noises to be introduced, the output signal-noise-ratio is equal to the input signal-noise-ratio if the small linear absorption in QPM devices is ignored. It has been also proved that the noise figure of the noiseless amplifier does not vary with the pump power and the propagation length of the signal light in the QPM crystal.  相似文献   

11.
Mizuuchi K  Yamamoto K 《Optics letters》1998,23(24):1880-1882
We report on a theoretical analysis and experiments for bandwidth broadening in quasi-phase-matched (QPM) second-harmonic generation (SHG).We used phase-shifted segments of a periodic grating to obtain a spectrally broadened, nearly flat response simultaneously with high conversion efficiency. We used an x-cut MgO:LiNbO(3) QPM waveguide in our analysis and experiments. The spectral range of the 850-nm fundamental for which SHG conversion exceeded 0.95 of the maximum value broadened from 0.02 to 0.12 nm when a 1-cm-long grating was divided into three segments with optimum phase shift. SHG conversion efficiency was 300%/W for this waveguide. The SHG efficiency and phase-matching characteristics showed good agreement with theoretical results.  相似文献   

12.
Meyn JP  Fejer MM 《Optics letters》1997,22(16):1214-1216
We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.  相似文献   

13.
We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.  相似文献   

14.
从PPLN波导微结构出发分析准相位匹配倍频过程中的相位补偿机理,以极化畴为单元,通过耦合波方程计算极化畴内产生的二次谐波电场,通过电场相干叠加计算倍频效率。分别在小信号近似和基频光高消耗情况下计算准相位匹配倍频效率,结果显示:倍频效率小于5%时,两种情况下的计算结果吻合得很好;随着转换效率增大,小信号近似不再适用,需要在基频光高消耗情形下计算倍频效率。研究了基频光功率密度与准相位匹配倍频效率的关系,定性分析了极化周期存在误差时,误差对倍频效率的影响。  相似文献   

15.
We have generated a second-harmonic generation(SHG) of a Q-switched microchip Nd:YAG laser on the surface of a periodically poled LiNbO3(PPLN) nonlinear crystal near the grazing incidence angle.Three individual SHG waves as transmitted homogeneous,inhomogeneous and reflected radiations have been generated and their intensities are measured and characterized within a desirable range of about 10 different incidence angles of the Nd:YAG laser as pump source on the PPLN surface.The basic of surface nonlinear radiation is also investigated and similar results are calculated and extracted from the theory.Comparison between calculated and measured data shows that they are in good agreement with each other.  相似文献   

16.
田宏宾  王丽 《光子学报》2007,36(8):1495-1499
基于周期极化晶体的Sellmeier方程和准相位匹配理论,对准相位匹配光参变振荡器的调谐特性进行了理论分析.通过数值模拟计算,得到了PPRTA晶体光参变振荡的调谐特性与极化反转光栅周期、晶体温度和抽运光波长等参量的关系曲线.并且与PPKTP晶体和PPLN晶体光参变振荡器的调谐特性进行了比较,研究了三者的不同之处,得出了PPRTA晶体的参量调谐特性优于PPKTP晶体和PPLN晶体的结论,与国外已报道的实验数据相吻合.证实了PPRTA晶体是一种可以产生可调谐近中红外光的理想准相位匹配非线性光学晶体.  相似文献   

17.
Ju JJ  Kim J  Do JY  Kim MS  Park SK  Park S  Lee MH 《Optics letters》2004,29(1):89-91
We demonstrate quasi-phase-matched (QPM) second-harmonic generation (SHG) at the optical communication wavelengths with side-chain polymer waveguides. A ridge waveguide structure is designed to support fundamental mode guiding at both the pump and the second harmonics, leading to a high field overlap integral of the guided modes. The nonlinearity contrast in the +/0 type QPM waveguide is maximized under a QPM poling electrode width of nearly half the coherence length. Using these configurations, we record a normalized SHG efficiency of 2.2% W(-1) cm(-2) in the polymer waveguide.  相似文献   

18.
半导体激光直接倍频的488nm蓝光激光器   总被引:4,自引:0,他引:4  
利用波导型准相位匹配周期极化反转铌酸锂(PPLN)晶体直接倍频波长为976 nm的连续半导体激光二极管,在最佳晶体工作温度(28℃)下,获得了波长为488 nm的连续蓝光输出,最大输出功率大于20 mW。所用的晶体尺寸为8 mm×1.4 mm×1 mm,波导截面为4.5μm×3.5μm,极化周期为5.2μm。研究了波导型周期极化反转铌酸锂晶体的倍频效率与温度的关系,与普通的周期极化反转铌酸锂相比,倍频效率与温度关系的敏感度较低。同时,由于晶体可以在室温下工作,简化了加温与温控部件,提高了整机的工作效率。在此实验的基础上,制成了一台小型的全固态488 nm连续蓝光激光器。  相似文献   

19.
During the fabrication of quasi-phase-matched(QPM) devices,errors of periodic structure are usually inevitable.The errors result in the deviation of the actual periodic domain length from the theoretical value.In this paper,we numerically analyse the influence of errors on the quadrature squeezing performance of a degenerate optical parametric amplifier consisting of QPM devices.It is shown that errors significantly degrade the squeezing degree of the quadrature squeezed light.Due to the presence of the errors,the relative phase between the signal and the pump field for obtaining the maximum squezing depends on the propagation distance of light in the crystal and the pump power.  相似文献   

20.
The characteristics of intra-cavity distributed Bragg reflector (DBR) quasi-phase-matched (IDQPM) second-harmonic-generation (SHG) lasers are theoretically studied. In the IDQPM-SHG laser, a QPM device and a DBR for feedback are separately fabricated on the same substrate with the QPM device placed between the DBR and a semiconductor laser. The threshold current of the IDQPM-SHG laser depends on the coupling efficiency between the laser diode and the QPM waveguide and the reflectivity of the DBR. The SH output of the IDQPM-SHG laser is strongly dependent on the generalized SHG conversion efficiency, x. This laser has the potential to attain an SH output over a 30-mW using a currently available 50-mW semiconductor laser for the fundamental light source, when highly efficient QPM device (x=2.2 W−1) is used. Its tolerance for various deviations from the initial design and the problems to develop a commercially available IDQPM-SHG laser are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号