首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Agnesi  L Carrà  R Piccoli  F Pirzio  G Reali 《Optics letters》2012,37(17):3612-3614
An Nd:YVO4 amplifier consisting of two modules end pumped at 808?nm at 30?W total absorbed power has been designed for efficient, diffraction-limited amplification of ultrafast pulses from low-power seeders. We investigated amplification with a 50?mW, 7?ps Nd:YVO4 oscillator, a 2?mW, 15?ps Yb fiber laser, and a 30?mW, 300?fs Nd:glass laser. Output power as high as 9.5?W with 8?ps pulses was achieved with the 250?MHz vanadate seeder, whereas the 20?MHz fiber laser was amplified to 6?W. The femtosecond seeder allowed extracting Fourier-limited 4?ps pulses at 7?W output power. To our knowledge, these are the shortest pulses from any Nd:YVO4 laser device with at least 7?W output power. This suggests a novel approach to exploit the gain bandwidth of vanadate amplifiers with high output power levels. Such amplifier technology promises to offer an interesting alternative to high-power thin disk oscillators at few picoseconds duration, as well as to regenerative amplifiers with low-repetition-rate fiber seeders.  相似文献   

2.
An octave spanning spectrum is generated in an As?S? taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.  相似文献   

3.
报道了利用零色散在780nm处的光子晶体光纤与纳焦耳量级的飞秒激光脉冲相互作用的实验结果.实验使用35fs,中心波长810—840nm,单脉冲能量可达14nJ的飞秒激光光源获得了超过一个倍频程的平坦超连续光谱(500—1100nm).在不同功率、不同中心波长、不同啁啾和有无直流成分的多种飞秒脉冲激光的条件下,研究了超连续光谱的产生情况.并对一系列现象进行了对比,分析了超连续光谱产生的机制. 关键词: 光子晶体光纤 飞秒脉冲激光 超连续光谱  相似文献   

4.
We report the synthesis of a nearly single-cycle (3.7?fs), ultrafast optical pulse train at 78?MHz from the coherent combination of a passively mode-locked Ti:sapphire laser (6?fs pulses) and a fiber supercontinuum (1-1.4?μm, with 8?fs pulses). The coherent combination is achieved via orthogonal, attosecond-precision synchronization of both pulse envelope timing and carrier envelope phase using balanced optical cross-correlation and balanced homodyne detection, respectively. The resulting pulse envelope, which is only 1.1 optical cycles in duration, is retrieved with two-dimensional spectral shearing interferometry (2DSI). To our knowledge, this work represents the first stable synthesis of few-cycle pulses from independent laser sources.  相似文献   

5.
We report on a systematic study of an environmentally stable mode-locked Yb-doped fiber laser operating in the chirped-pulse regime. The linear cavity chirped-pulse fiber laser is constructed with a saturable absorber mirror as nonlinear mode-locking mechanism and a nonlinearity-free transmission-grating-based stretcher/compressor for dispersion management. Mode-locked operation and pulse dynamics from strong normal to strong anomalous total cavity dispersion in the range of +2.5 to ?1.6 ps2 is experimentally studied. Strongly positively chirped pulses from 4.3?ps (0.01?ps2) to 39?ps (2.5?ps2) are obtained at normal net-cavity dispersion. In the anomalous dispersion regime, the laser generates average soliton feature negatively chirped pulses with autocorrelation pulse durations from 0.8?ps (?0.07 ps2) to 3.9?ps (?1.6 ps2). The lowered peak power due to the pulse stretching allows one to increase the double pulse threshold. Based on the numerical simulation, different regimes of mode locking are obtained by varying the intra-cavity dispersion, and the characteristics of average soliton, stretched-pulse, wave-breaking-free and chirped-pulse regimes are discussed.  相似文献   

6.
Liu  D. -F.  Zhu  X. -J.  Wang  C. -H.  Yu  J. -J.  Fang  E. -X.  Wang  J. -J. 《Laser Physics》2011,21(2):414-418
We report an all normal dispersion low repetition rate high energy passive mode-locked ytterbium-doped fiber laser with output pulses duration ranging from nanoseconds to picoseconds. The mode-locking mechanism of the laser is based on nonlinear polarization evolution and strong pulses shaping with a cascade long-period fiber grating bandpass filtering in highly chirped pulses. The laser generates highly stable pulses duration from 2.62 ns to 315 ps with a maximum pulse energy of 49.5 nJ and 2.5435 MHz repetition rate.  相似文献   

7.
We report on a mode-locked all-normal dispersion fiber laser featuring a large-mode-area all-solid photonic bandgap fiber. The self-starting chirped-pulse laser delivers 660 mW of average power at a repetition rate of 30 MHz, leading to 22?nJ energy. The output pulses are dechirped outside the cavity to nearly transform-limited duration of 50?fs. Numerical simulations are in good agreement with experiments and highlight the key role of passive spectral filtering on pulse shaping.  相似文献   

8.
Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100?W at 100?MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13?ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5?ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.  相似文献   

9.
We propose a design of an all-fiber laser system that combines the most advanced Er:fiber laser in the telecommunication range and an efficient Yb-doped amplifier for generation of high-power ultrashort pulses. The system is based on nonlinear wavelength conversion of 1.56 μm ultrashort Er:fiber laser pulses to the 1 μm range in a short pigtail of dispersion-shifted silica fiber with subsequent amplification in the Yb-doped fiber amplifier. Pulses with a duration as short as 85 fs and averaged power of 200 mW are demonstrated.  相似文献   

10.
We report the development of a compact, tunable synchronously pumped photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). The oscillator is pumped using a gain-switched laser diode producing 220?ps pulses around 1062?nm, amplified in a ytterbium doped amplifier to peak powers of 3.5?kW. The FOPO produces anti-Stokes pulses at wavelengths between 757 and 773?nm, with durations of 150?ps at average output powers exceeding 290?mW. The output slope efficiency of the device varies with output wavelength from 1.9 to 6.0%.  相似文献   

11.
被动谐波锁模掺Yb3+光纤环形激光器   总被引:2,自引:2,他引:2       下载免费PDF全文
 利用光纤的非线性偏振旋转效应产生可饱和吸收体的锁模机制,从掺Yb3+光纤环形激光器中得到稳定高阶谐波锁模光脉冲。理论分析了工作于正色散区的掺Yb3+光纤环形激光器的特性。实验中观测到了掺Yb3+光纤环形激光器3种不同演化方式产生高阶锁模光脉冲。4阶谐波锁模脉冲(107.2 MHz重复频率)经过1 m长高掺杂Yb3+光纤放大器放大后产生了平均功率100 mW,脉宽22.8 ps的脉冲,最后经过光栅压缩得到了平均输出功率20 mW,脉宽307 fs,脉冲中心波长1 051.2 nm,带宽13.76 nm的激光。  相似文献   

12.
报道了利用飞秒脉冲激光与非均匀微结构光纤相互作用中产生超连续光谱后在非均匀微结构光纤传输中双折射拍频现象的研究.利用35?fs的飞秒激光脉冲在高双折射微结构光纤中的传输过程中直接观察到了拍频现象.并利用有限元方法对该光纤进行了模拟计算分析,计算得出在600?nm处拍频长度为毫米量级.所得结果与实验一致. 关键词: 双折射效应 微结构光纤 超连续光谱 有限元法  相似文献   

13.
We report the generation of 140 fs pulses with a peak power of up to 270 kW using a fiber pulse source based on a polarization-maintaining ytterbium-doped fiber amplifier and a semiconductor saturable absorber mirror mode-locked fiber laser seed. The seed laser pulses were amplified and chirped in the fiber amplifier and subsequently compressed in an external transmission grating pair. The use of a polarization-maintaining amplifier addresses nonlinear polarization-induced limitations to the obtainable compressed pulse duration and quality that can arise if isotropic fiber amplification is used. Numerical simulations of the system support the experimental measurements and also confirm the role of fiber dispersion in obtaining high-quality compressed pulses.  相似文献   

14.
In this Letter, a simple and passively mode-locking Yb-doped all fiber laser using a nonlinear polarization rotation technique operating under dissipative soliton(DS) or dissipative soliton resonance(DSR) conditions is proposed, furthermore, using a combination of a bandpass filter and a Loyt filter, tunable single-wavelength or dual-wavelength operation under two different conditions is realized, respectively. The tunable single?wavelength DS laser has a 5 nm tuning range from 1029 to 1034 nm with a pulse width of 110 ps. The tunable single-wavelength DSR operation laser has a range of 4 nm. In-depth research on the mechanism of the con?version between DS and DSR is carried out. Particularly, under dual-wavelength DSR operation, the obtained step-like pulses consist of two rectangular pulses with different energies. This work could help give a deeper insight into normal dispersion pulses.  相似文献   

15.
Lim H  Ilday FO  Wise FW 《Optics letters》2003,28(8):660-662
We report a mode-locked ytterbium fiber laser that generates femtosecond pulses with energies as large as 2.2 nJ. This represents a 20-fold improvement in pulse energy compared with that of previously reported femtosecond Yb fiber lasers. The laser produces pulses as short as 52 fs, which are to our knowledge the shortest pulses to date from a Yb fiber laser. The laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability.  相似文献   

16.
The feasibility of transmitting 20 MW, 5 ns laser pulses from a frequency doubled Nd:YAG laser through a standard 1500 μm multi mode optical fiber is demonstrated. A new coupling scheme employing an optical homogenizer prevents breakdown in air without the use of a vacuum chamber. At the same time a very homogeneous flat top beam profile on the fiber surface is achieved. The new scheme therefore clearly simplifies fiber coupling of high power laser pulses. Experiments on the delivery of more than 20000 pulses with 110 mJ mean energy without fiber damage have been performed. Received: 2 August 2000 / Revised version: 18 August 2000 / Published online: 22 November 2000  相似文献   

17.
Geng J  Wang Q  Jiang Z  Luo T  Jiang S  Czarnecki G 《Optics letters》2011,36(12):2293-2295
We generated single-frequency pulses at kilowatt peak power from an all-fiber Tm-doped master oscillator power amplifier system, which is the first report of this kind (to the best of our knowledge) of a laser in the 2 μm region. Compared with the laser linewidth of seed pulses, spectral broadening by a factor of 3 was observed with the amplified pulses. This was attributed to self-phase modulation in passive pigtail fibers of the components (isolator and wavelength division multiplexing) that were placed after the fiber amplifier. The short pulse width (~7 ns) of the kilowatt-level pulses prevents an onset of stimulated Brillouin scattering in the long fiber. When launching the pulses into several-meter single-mode fiber, significant nonlinear spectral broadening occurs due to modulation instability in the fiber. This reaction is beneficial for generation of a mid- and long-wavelength IR supercontinuum in nonlinear IR fibers.  相似文献   

18.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

19.
Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.  相似文献   

20.
吕志国  杨直  李峰  李强龙  王屹山  杨小君 《物理学报》2018,67(18):184205-184205
高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980, 1000,1050, 1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203, 195, 196, 187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号