首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 × 10−6 cm2 s−1, which corresponded to a molecular weight range of 680–1950 Da and a size of 1.6–2.5 nm. Fluorescence excitation–emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change.  相似文献   

2.
Sladkov V  Zhao Y  Mercier-Bion F 《Talanta》2011,83(5):289-1600
Capillary zone electrophoresis was used to study the uranyl and short chain carboxylic acid sorption on silica and rutile. The separation and the simultaneous determination (in a single run) of a number of short chain carboxylic acids (oxalic, formic, acetic and propionic) and U(VI) with direct UV detection is developed for the analysis of solutions after the sorption experiments. The reverse polarity mode is used (the injection is performed at the negative end). The matrix effect of Si(IV) (possible silica dissolution product) and perchlorate (added for constant ionic strength in sorption experiments) on the separation of U(VI) and organic acids is investigated. The influence of methanol addition in carrier electrolyte on the separation selectivity of given analytes is also studied. Under the chosen conditions (carbonate buffer (ionic strength of 0.1 M), pH 9.8, 0.15 mM of tetradecyltrimethylammonium bromide, 25% (v/v) of methanol) the calibration curves are plotted. They are linear in two ranges of concentration from ∼1 × 10−5 to ∼1 × 10−3 M for oxalate, acetate, propionate, U(VI) and ∼1 × 10−4 to ∼1 × 10−3 for formate. The accuracy of the procedure is checked by the “added-found” method in simulation solutions. The relative standard deviations of the concentrations found are within the range of 1-10% and the recovery is in the range of 90-115%. This method is applied for the analysis of aqueous samples issued from sorption experiments on silica and rutile. The obtained results indicate that the given organic acids decrease uranium sorption both on silica and rutile. These experiments demonstrate that short chain carboxylic acids can influence the mobility and the chemistry of U(VI) in the environment.  相似文献   

3.
Auler LM  Silva CR  Bottoli CB  Collins CH 《Talanta》2011,84(4):1174-1179
This work describes the characterization and potential applications of a silica-based anion-exchange phase prepared by a two-step modification process that incorporates a propylpyridinium group. The effects of pH and eluent concentration on anion separation were examined using 150 mm × 3.9 mm HPLC columns packed with the new phase. The mobile phase pH values ranged from 3.8 to 6.6 using phthalic acid/Tris solutions. The best separation was achieved using 2.5 mmol L−1 phthalate/2.4 mmol L−1 Tris solution at pH 4.2 as mobile phase with non-suppressed conductivity detection. The new stationary phase was used for the separation of some inorganic and organic anions showing good resolution. The stability of the silica-based anion exchange phase was also evaluated.Analytical curves, for concentrations ranging from 0.25 to 10 mg L−1 for the inorganic anions chloride, nitrite, bromide and nitrate, showed good linear correlations (r > 0.998). The method was tested with certified rainwater samples. The measured and certified values were in good agreement, indicating that the new phase holds significant promise for the analysis of these anions in environmental samples.  相似文献   

4.
A novel disposable adsorbent material for fast cation-exchange separation of proteins was developed based on plastic microcapillary films (MCFs). A MCF containing 19 parallel microcapillaries, each with a mean internal diameter of 142 μm, was prepared using a melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH). The MCF was surface functionalised to produce a cation-exchange adsorbent (herein referred as MCF-EVOH-SP). The dynamic binding capacity of the new MCF-EVOH-SP material was experimentally determined by frontal analysis using pure protein solutions in a standard liquid chromatography instrument for a range of superficial flow velocities, uLS = 5.5–27.7 cm s−1. The mean dynamic binding capacity for hen-egg lysozyme was found to be approximately 100 μg for a 5 m length film, giving a ligand binding density of 413 ng cm−2. The dynamic binding capacity did not vary significantly over the range of uLS tested. The application of this novel material to subtractive chromatography was demonstrated for anionic BSA and cationic lysozyme at pH 7.2. The chromatographic separation of two cationic proteins, lysozyme and cytochrome-c, was also performed with a view to applying this technology to the analysis or purification of proteins. Future applications might include separation based on anion exchange and other modes of adsorption.  相似文献   

5.
The detection of nitroaromatic compounds, best known as raw materials in explosives preparations, is important in many fields including environmental science, public security and forensics. CdSe quantum dots capped with PAMAM-G4 dendrimer were synthetized in water and used for the detection of trace amounts of three nitroaromatic compounds: 4-methoxy-2-nitrophenol (MNP), 2-amine-5-chloro-1,3-dinitrobenzene (ACNB) and 3-methoxy-4-nitrobenzoic acid (MNB). To increase the apparent water solubility of these compounds α-cyclodextrin (α-CD) was used to promote the formation of inclusion complexes. The studied nitroaromatic compounds (plus α-CD) significantly quenched the fluorescence intensity of the nanocomposite with linear Stern-Volmer plots. The Stern-Volmer constants (standard deviation in parenthesis) were: MNB, KSV = 65(5) × 104 M−1; ACNB, KSV = 19(2) × 104 M−1; and, MNP, KSV = 33(1) × 102 M−1. These constants suggest the formation of a ground state complex between the nitroaromatric compounds and the sensor which confers a relatively high analytical sensitivity. The detection sensibilities are about 0.01 mg L−1 for MNB and ACNB and about 0.1 mg L−1 for MNP. No interferences or small interferences are observed for trinitrotoluene [KSV = 10(2) × 102 × M−1], 2,4-dinitrotoluene [KSV = 20(3) × 10 M−1], 2,6-dinitrotoluene [KSV = 11(4) × 10 M−1] and nitrobenzene [KSV = 2(1) × 103 × M−1].  相似文献   

6.
Sangoi MS  Todeschini V  Steppe M 《Talanta》2011,84(4):905-1079
In the present study, a rapid validated stability-indicating LC method was established and comprehensive stress testing of fesoterodine was carried out according to ICH guidelines. Fesoterodine was subjected to stress conditions of acid and basic hydrolysis, oxidation, photolysis and thermal decomposition. The degradation products formed under stress conditions were investigated by LC-UV and LC-ESI-MS. Successful separation of the drug from its degradation products was achieved on a monolithic C18 column (100 mm × 4.6 mm i.d.) maintained at 45 °C using acetonitrile-methanol-0.03 mol L−1 ammonium acetate (pH 3.8) (30:15:55, v/v/v) as the mobile phase. The flow rate was 2.4 mL min−1 and the detection wavelength was 208 nm. Validation parameters such as specificity, linearity, precision, accuracy, and robustness were evaluated. Chromatographic separation was obtained within 2.5 min and it was suitable for high-throughput analysis. Fragmentation patterns of degradation products formed under different stress conditions were studied and characterized through LC-ESI-MS fragmentation. Based on the results, a drug degradation pathway was proposed, and the validated LC method was successfully applied to the quantitative analysis of fesoterodine in tablet dosage forms, helping to improve quality control and to assure therapeutic efficacy.  相似文献   

7.
Flow field-flow fractionation (flow FFF), a separation technique for particles and macromolecules, has been used to separate carbon nanotubes (CNT). The carbon nanotube ropes that were purified from a raw carbon nanotube mixture by acidic reflux followed by cross-flow filtration using a hollow fiber module were cut into shorter lengths by sonication under a concentrated acid mixture. The cut carbon nanotubes were separated by using a modified flow FFF channel system, frit inlet asymmetrical flow FFF (FI AFIFFF) channel, which was useful in the continuous flow operation during injection and separation. Carbon nanotubes, before and after the cutting process, were clearly distinguished by their retention profiles. The narrow volume fractions of CNT collected during flow FFF runs were confirmed by field emission scanning electron microscopy and Raman spectroscopy. Experimentally, it was found that retention of carbon nanotubes in flow FFF was dependent on the use of surfactant for CNT dispersion and for the carrier solution in flow FFF. In this work, the use of flow FFF for the size differentiation of carbon nanotubes in the process of preparation or purification was demonstrated.  相似文献   

8.
WO3 colloidal suspensions obtained through a simple sol–gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO3 particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM–TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO3 films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1 M H2SO4 under solar simulated irradiation. The current–voltage polarization curves recorded in the potential range 0–1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm−2 to 2.8 mA cm−2 with aging times of 1 h and 5 h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI) → W(V) process measured in the dark.  相似文献   

9.
Cao Y  Wu X  Wang M 《Talanta》2011,84(4):1530-1194
Nucleic acids can greatly enhance fluorescence intensity of the kaempferol (Km)-Al(III) system in the presence of silver nanoparticles (AgNPs). Based on this, a novel method for the determination of nucleic acids is proposed. Under studied conditions, there are linear relationships between the extent of fluorescence enhancement and the concentration of nucleic acids in the range of 5.0 × 10−9 to 2.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 7.0 × 10−9 to 2.0 × 10−6 g mL−1 for salmon sperm DNA (smDNA) and 2.0 × 10−8 to 3.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits are 2.5 × 10−9 g mL−1, 3.2 × 10−9 g mL−1 and 7.3 × 10−9 g mL−1, respectively. Samples were satisfactorily determined. And the system of Km-Al(III)-AgNPs was used as a fluorescence staining reagent for sensitive DNA detection by DNA pattern of agarose gel electrophoresis analysis. The results indicate that the fluorescence enhancement should be attributed to the formation of Km-Al(III)-AgNPs-nucleic acids aggregations through electrostatic attraction and adsorption bridging action of Al(III) and the surface-enhanced fluorescence effect of AgNPs.  相似文献   

10.
Menon SK  Modi NR  Patel B  Patel MB 《Talanta》2011,83(5):1329-1334
We found that the PVC membrane, containing azo calix[4]arene is a suitable ionophore, exhibited a Nernstian response for neodymium (Nd3+) ions (with slope of 19.8 ± 0.2 mV decade−1 for the triply charged ion) over a wide linear range of 4.0 × 10−8 to 1.0 × 10−1 mol L−1 with a detection limit 1.0 × 10−8 mol L−1, a relatively fast response time, in the whole concentration range (<10 s), and a considerable life time at least for four months in the pH range of 4.0-8.0. Furthermore, the electrode revealed high selectivity with respect to all the common alkali, alkaline earth, transition and heavy metal ions, including the members of the lanthanide family other than Nd3+. Concerning its applications, it was effectively employed for the determination of neodymium ions in industrial waste water as well as in lake water.  相似文献   

11.
A surfactant bilayer/diblock polymer coating was previously developed for the separation of proteins. The coating consisted of a mixture of the cationic surfactant dioctadecyldimethylammonium bromide (DODAB) and the neutral polymer poly-oxyethylene (POE) 40 stearate (Journal of Chromatography A 1130 (2006) 265–271). Herein an improved method of generating DODAB/POE stearate coatings is demonstrated, which yields more predictable EOF, more stable coatings, greater average efficiencies and easier method development. In this sequential preparation method the DODAB is first flowed through the capillary, followed by a flow of the POE stearate (sequential method). A tunable EOF (−2.40 to −0.17 × 10−4 cm2/Vs) is achieved by varying the POE chain length (8, 40 and 100 oxyethylene units). Mixtures of POE 8 and POE 40 stearate enabled continuous variation in EOF from −2.44 to −0.42 × 10−4 cm2/Vs. Separations of basic proteins yielded efficiencies of 760 000–940 000 plates/m. Coatings formed using the sequential method were more stable over a larger number of runs (%RSD for migration times: 0.7–1.0% over 30 runs) than those formed using the original mixed method (%RSD: 2.4–4.6% over 14 runs). The ability to tune the EOF is important in maximizing the resolution of analytes with similar electrophoretic mobilities. Histone proteins are separated on a sequentially coated capillary with resolution of nine possible subtypes. Acidic proteins are separated on a sequentially coated capillary at pH 6.4.  相似文献   

12.
Tafesse F  Enemchukwu M 《Talanta》2011,83(5):269-1495
A highly selective and sensitive phosphate sensor has been fabricated by constructing a crystal disk consisting of variable mixtures of aluminium powder (Al), aluminium phosphate (AlPO4) and powdered copper (Cu). The membrane sensor exhibits linear potential response in the concentration range of 1.0 × 10−1 to 1.0 × 10−6 mol L−1. The proposed sensor also exhibits a fast response time of <60 s. Its detection limit is lower than 1.0 × 10−6 mol L−1. The electrode has a long lifetime and can be stored in air when not in use. The selectivity of the sensor with respect to other common ions is excellent.  相似文献   

13.
A simple, fast and sensitive HPLC method with electrochemical detection employing boron-doped diamond electrode (BDD) for the determination of sildenafil (Viagra™), vardenafil (Levitra™) and their main metabolites, N-desmethyl sildenafil and N-desethyl vardenafil in human plasma is presented. The assay involved drug extraction by tert-butyl methyl ether and isocratic reversed-phase liquid chromatography with amperometric detection. Complete separation of all analytes was achieved within 12 min. The mobile phase consisted of 20 mM sodium dihydrogen phosphate with 40 mM sodium perchlorate/acetonitrile (70:30, v/v), pH 3.5. The electrode working potential was +1520 mV (vs. Pd/H2). Calibration curves were linear over the concentration range of 10–400 ng mL−1. Phloretin was used as an internal standard. The limits of detection (LOD) and quantification (LOQ) for the studied analytes were within the range of 2–4 ng mL−1 and 7.0–13.4 ng mL−1, respectively. The developed method was applied to human plasma samples spiked with analytes at therapeutic concentrations. The study confirms the method's suitability for both pharmacokinetic studies and therapeutic monitoring.  相似文献   

14.
Yu C  Du H  You T 《Talanta》2011,83(5):57-1380
The tricyclic antidepressants (TCA) imipramine (Imi) and trimipramine (Tri) were successfully analyzed by capillary electrophoresis (CE) coupling with Tris(2,2-bipyridyl) ruthenium(II)-based (Ru(bpy)32+) end-column electrochemiluminescence (ECL) detection. The addition of β-CD to the running buffer was found to enable baseline separation of the two analytes and the addition of acetonitrile (ACN) as an organic additive to improve the repeatability and sensitivity of the CE method. Under the optimized separation and detection conditions (50 mM PBS (pH = 7.0) and 2 mM Ru(bpy)32+ in the ECL detection cell, 20 mM Tris (pH = 2.0), 0.2 mM β-CD and 20% ACN (v/v) as running buffer), wide linear ranges of 0.1-5 μM and 0.1-5 μM were achieved, with the correlation coefficients of 0.9990 (n = 8) and 0.9980 (n = 8) for Imi and Tri, respectively. Detection limits 5 nM and 1 nM (S/N = 3) were obtained for Imi and Tri, respectively. The method was also successfully applied for the determination of Imi in pharmaceutical dosage form.  相似文献   

15.
A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1 V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device.  相似文献   

16.
A rapid and simple procedure for the direct screening of urine samples is described. The method involves microextraction in a packed sorbent (MEPS) that is on-line coupled to a capillary liquid chromatograph with fluorimetric detection. The overall arrangement works as a screening/confirmatory system for monitoring non-polar heterocyclic aromatic amines (HAAs) in urine samples. This configuration allows the selective retention of HAAs from urine on a C18 MEPS cartridge integrated in the needle of a micro-well plate autosampler. Retained HAAs were eluted with methanol/water (90:10, v/v) and directly injected into the fluorimetric detector. This screening method provides a yes/no binary response that may require confirmation. The samples for which the concentration of HAAs was close to or above the established threshold limit (30 ng mL−1) were subjected to capillary liquid chromatography (CLC) for confirmation purposes. A mobile phase of acetonitrile and triethylamine (25 mM) at pH 2.5, through a gradient of composition at a flow rate of 20 μL min−1, resulted in good separations between the analytes in less than 11 min. This confirmation method allowed the determination of the analytes in the 10-100 ng mL−1 range for harmane and norharmane and from 20 to 200 ng mL−1 for 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido-[4,3-b] indole (Trp-P-2), 2-amino-9H-pyrido-[2,3-b] indole (AαC) and 2-amino-3-methyl-9H-pyrido-[2,3-b] indole (MeAαC), with relative standard deviation (RSD) values between 2.12% and 3.73%, and limits of detection between 1.6 and 5.6 ng mL−1 for all the HAAs.  相似文献   

17.
It is shown theoretically that a claim in the literature about the overall separation efficiency of asymmetrical flow FFF channels being improved by geometries that permit a uniform channel flow velocity throughout the channel length is untrue.  相似文献   

18.
García MD  Pedrosa BP  Galera MM 《Talanta》2011,83(5):271-1672
This paper describes about an automated on-line enrichment method for the simultaneous determination of seven β-blockers in river water using a short liquid chromatography column for preconcentration coupled with LC-DAD. The method performs the preconcentration of 30 mL of river water samples (5% organic modifier) using a 50 mm × 4.6 mm C18 column for enrichment and a 150 mm × 4.6 mm C18 column for separation, allowing the determination of β-blockers at trace levels in river water. The analytical procedure was developed by optimizing the breakthrough parameters (flow rate, time of preconcentration and percentage of organic modifier added to the sample) in order to achieve the maximum sensitivity, and by optimizing the mobile phase (composition and flow rate) to get adequate separation of the components in a reasonable analysis time. Under the optimized conditions, the method was validated with respect to linearity, precision, limits of detection, limits of quantification and accuracy. Detection and quantitation limits ranged between 0.1 and 3.1 and between 1.0 and 5.0 ng mL−1, respectively, whereas the RSD on inter-day precision was below 8%.To cope with the matrix effect in the determination of these drugs in river water samples, the standard addition methodology was successfully applied. Recoveries ranging from 81 to 115% proved the accuracy of the methodology proposed in this work.  相似文献   

19.
The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0 × 10−7–1.0 × 10−4 mol/L and 5.0 × 10−7–1.0 × 10−4 mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34 × 10−8 mol/L for fumaric acid and 1.92 × 10−7 mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95–105%. This work provided a valid and simple approach to detect fumaric and maleic acid.  相似文献   

20.
Zhang PP  Shi ZG  Yu QW  Feng YQ 《Talanta》2011,83(5):5896-1715
A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8 ng mL−1 .The linearity ranges were 8-20,000 ng mL−1 for HB, 7-20,000 ng mL−1 for DB, 8-10,000 ng mL−1 for BP and 5-20,000 ng mL−1 for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n = 3) at a spiked level of 80 ng mL−1 were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号