首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of nucleosides and nucleotides is desirable in many biological studies, but the task is analytically challenging due to the high polarity of the analytes. In this study, resolution of mixtures containing nucleosides and their mono-, di- and triphosphates was achieved using a porous graphitic carbon (PGC) stationary phase, Hypercarb, under conditions suitable for liquid chromatography/mass spectrometry (LC/MS). Different organic mobile phases and modifiers were evaluated and the separation of 16 nucleosides and nucleotides was optimized using gradient elution with a water/acetonitrile mobile phase containing ammonium acetate and diethylamine as modifiers. The ammonium acetate concentration proved to be critical for retention and diethylamine was found to improve the peak shapes of di- and triphosphates for mass spectrometric detection. A variety of silica-based columns designed for polar compound separation were also tested using optimized LC conditions and compared with results obtained with the Hypercarb column. Only the Hypercarb column provided separations suitable for accurate quantitation of mixed nucleosides and their phosphates.  相似文献   

2.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

3.
The effects of stationary and mobile phase on retention of 18 beta-adrenolytic drugs (beta-blockers) have been studied. Four 'deactivated surface' stationary phases (polar-embedded or end-capped) were examined. Special attention was drawn to the cholesterolic (SG-CHOL) and alkylamide (SG-AP) stationary phases, and their application for analysis of the compounds. The retention of analyzed substances was also examined in terms of mobile phase composition. Sixteen different configurations of mobile phases were prepared, all based on methanol and acetonitrile with ammonium acetate and ammonium formate. The difference in retention between ammonium formate and acetate water solutions, and peak shape changes related to the addition of triethylamine (TEA), were investigated. Principal component analysis was used to find the similarities between stationary phases. Polar-embedded phases synthesized on the same sorbent possess very similar properties. All phases based on silica gel compared with the monolithic column also showed similarities in retention of beta-blockers. The addition of TEA to the mobile phase did not influence strongly the retention, and analysis of asymmetry factors showed only a little peak broadening for a few compounds on the monolithic column.  相似文献   

4.
The separation of five amino beta-lactam antibiotics by reversed-phase high-performance liquid chromatography was studied as an insight into their retention behaviour. These five amphoteric compounds are cephradine, cephalexine, cefaclor, ampicillin and amoxicillin. Both octadecylsilane-bonded silica (C18) columns and phenyl-bonded silica (phenyl) columns were used, with mobile phase pH values between 2.5 and 7.4. In the absence of ion-pairing reagents the retention times for all the five compounds were the shortest at pH 4-6. The phenyl column was found to improve the separation between cephradine and ampicillin at pH values lower than 3, when these two compounds appeared as fused peaks on the C18 on C18 columns, with mobile phases both with and without ion-pairing reagents, were compared. The addition of 0.005 or 0.02 M tetraethylammonium acetate to the mobile phase did not result in significant ion-pair formation, except at pH values higher than 5.5. A strong ion-pairing effect was obtained at pH values higher than 6 with 0.005 or 0.02 M tetrabutylammonium phosphate, and the retention was decreased at pH values lower than 4. On the other hand, 0.005 M heptanesulphonic acid exhibited an ion-pair retention effect at pH values lower than 5. The molecular structures and pK(a) values were used to account for the retention behaviour of these antibiotics in the various mobile phases.  相似文献   

5.
Derivatives of 1,4-dihydropyridine (DHP) still play an important role in treatment of cardiovascular diseases. Typical degradation of the DHP ring is aromatization to pyridine ring which occurs both chemically and biochemically. It is, therefore, important to have a reliable and robust analytical method for separation of DHPs from their oxidized counterparts. Separation of closely-related substances possessing similar hydrophobicity, such as DHP and its oxidized form, can be challenging on conventional alkyl-bonded sorbents. In this study, an impact of reversed-phase (RP) liquid chromatography conditions on separation of the DHP/Ox pair has been investigated. Initially, a systematic study has been performed on 33 commercial RP columns with mobile phase acetonitrile/water for separation of foridone and its corresponding oxidized form. The retention and selectivity are discussed in view of the hydrophobic-subtraction model. Best separation was found replacing conventional C18 sorbents with ones containing an embedded polar group due to polar interactions. Similarly, application of cyano columns resulted in efficient separation of analytes. Organic modifier of mobile phase (methanol vs. acetonitrile) contributed significantly to separation of foridone from its oxidized counterpart. Separation of six chemically diverse DHPs from corresponding oxidized forms was studied on seven RP columns (traditional C18 sorbent, alkyl sorbent with polar embedded group, two different aromatic phases, pentafluorophenylpropyl sorbent and sorbent with straight chain perfluorohexyl ligand). Both acetonitrile and methanol were applied as organic modifier. It was found that application of alkyl sorbent with an embedded polar group (column Zorbax Bonus RP) or cyano sorbent (column ACE CN) yields clear separation of chemically diverse DHPs from their oxidized forms.  相似文献   

6.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

7.
In order to assess the effect of silica gel structure on retention in hydrophilic interaction chromatography, a test system was developed which used quaternary ammonium ions as probes with tetramethylammonium acetate (TMAA) as the counter-ion competing against the interaction of the test probes with ionised silanols in the stationary phase. Four silica gel columns and a silica hydride column were examined. Retention times were obtained for the test probes at 20, 40, 60, 80 and 90 % acetonitrile (ACN) with all the mobile phase mixtures containing 10-mM TMAA buffer at pH 6.0. All phases gave “U”-shaped plots for log k against percentage of ACN with the steepest rise in retention occurring between 80 and 90 % ACN. Benzyltrimethylammonium, the smallest quaternary ammonium ion, was the most strongly retained probe at 90 % ACN and was most retained on a high surface area 60 Å Kromasil column and least retained on a 300 Å ACE silica gel column. The ionic strength of the mobile phase was varied at 80 and 90 % ACN and plots of log k against the inverse of buffer strength followed by fitting of second-order polynomial curves allowed an assessment of the contribution from HILIC to the mixed HILIC/ion-exchange retention mechanism. Toluene and pentylbenzene were used to assess the decrease in accessible pore volume due to water absorption in HILIC mode.  相似文献   

8.
Summary Isocratic column liquid chromatographic systems with UV absorbance detection at 280 nm have been developed for the separation of 29 phenolics and related compounds.The selectivity was investigated on silica-, carbon- and polymer-based separation columns for the separation of phenolic type of components. The effects of various acetonitrile/buffer mixtures, and pH of the mobile phase, and their impact on the retention of the phenols was assessed. Tables of retention times on the four columns for the 29 phenols with two different acetonitrile/buffer mixtures, together with the retention times at three pHs from 6.5 to 2.3 with varying levels of organic modifier on the LiChrospher RP 18 column are presented.As an application, the analysis of real river water samples from the Ebro river is described using a solid phase extraction step prior to injection into the chromatographic system.  相似文献   

9.
Four C18 columns and a novel amide C16 column were assessed in the HPLC separation of eight microcystins and nodularin-R. Gradient mobile phases of acetonitrile combined with trifluoroacetic acid, formic acid or ammonium acetate were compared. Special attention was paid to the resolution of four possible coeluting microcystin pairs. Generally speaking, the acidic mobile phases were superior to the ammonium acetate-based mobile phase in terms of resolution and selectivity. The amide C16 column had the best overall performance and unique selectivity properties.  相似文献   

10.
Enzymatically digested kappa (A-G4S)-carrageenans, apart from their biological activities in plants, could be used as 'model' molecules to elucidate potential problems in nuclear magnetic resonance spectroscopy of carrageenans. Thus, oligosaccharides obtained from kappa-carrageenan by enzymatic digestion using kappa-carrageenase have been separated on silica and polymeric based ion-exchange and porous graphitic carbon (PGC) columns, coupled to an evaporative light scattering detector. Oligomers were separated on ion-exchange columns using a gradient of ammonium acetate as a developing ion, while analysis on PGC column presented an additional adjacent peak next to each main one, using a gradient of ammonium acetate in water/acetonitrile as a mobile phase. The phenomenon can be attributed to different retention mechanisms that govern the PGC surface. Furthermore, it has been demonstrated that acetonitrile can regulate the selectivity between the peaks raising hopes for preparative chromatography.  相似文献   

11.
L Roed  E Lundanes  T Greibrokk 《Electrophoresis》1999,20(12):2373-2378
A nonaqueous packed capillary electrochromatographic reversed-phase method for separation of retinyl esters has been developed. The retinyl esters all-trans-retinyl acetate, palmitate, heptadecanoate, stearate, oleoate, and linoleoate were separated on a 180 microm ID column packed with 5 microm C30 particles with a mobile phase consisting of 2.5 mM lithium acetate in N,N-dimethylformamide-methanol (99:1, v/v). With this mobile phase, the electroosmotic flow was 0.8 mm/s at 650 V/cm and 40 degrees C, and the separation was completed in less than 30 min on 30 cm columns. To obtain electrostable frits of the hydrophobic C30 material both the preparation of the frits and the conditioning of the column prior to electroconditioning were of importance. Selectivity changes were introduced by replacing up to 70% v/v of the N,N-dimethylformamide by acetonitrile. The increase in the amount of acetonitrile was, however, accompanied by a significant increase in analysis time. Liver extracts obtained from arctic seal were analyzed.  相似文献   

12.
Two capillary columns for reversed phase (RP) capillary liquid chromatography (CLC), viz. Nucleosil 100‐5 C18 and LiChrosorb RP‐select B, were characterized by the Walters test, i.e. the chromatographic test proposed for RP stationary phases. Hydrophobicity indices were determined not only in acetonitrile/water mobile phase, as proposed in the test, but they were also measured in buffered systems. This approach was used to quantify the influence of mobile phase composition on the modification of the surface of the stationary phases. In the next step, small basic compounds differing in their hydrophobicity and basicity were selected and their retention on the stationary phases in mobile phases of the same composition as used for column testing was examined. Furthermore, the retention of newly synthesized drugs, chemotherapeutics derived from thioacridine and pyridoquinoline, differing in their structures, basicity, and hydrophobicity, was also studied. The composition of the mobile phases had to be shifted to higher contents of organic modifiers – acetonitrile or methanol – in order to elute these hydrophobic compounds from the columns. The question we wanted to answer was: How is the method for testing of reversed phases related to retention, separation efficiency, and peak symmetry of various analytes?  相似文献   

13.
This paper presents a systematic study of the retention behavior of a model bisdioxopiperazine drug, dexrazoxane (DEX) and its three polar metabolites (two single open-ring intermediates-B and C and an EDTA-like active compound ADR-925) on different stationary phases intended for hydrophilic interaction liquid chromatography (HILIC). The main aim was to estimate advantages and limitations of HILIC in the simultaneous analysis of a moderately lipophilic parent drug and its highly polar metabolites, including positional isomers, under MS compatible conditions. The study involved two bare silica columns (Ascentic Express HILIC, Atlantis HILIC) and two stationary phases with distinct zwitterionic properties (Obelisc N and ZIC HILIC). The chromatographic conditions (mobile phase strength and pH, column temperature) were systematically modified to assess their impact on retention and separation of the studied compounds. It was found that the bare silica phases were unable to separate the positional isomers (intermediates B and C), whereas both columns with zwitterionic properties (Obelisc N and ZIC HILIC) were able to separate these structurally very similar compounds. However, only ZIC HILIC phase allowed appropriate separation of DEX and all its metabolites to a base line within a single run. A mobile phase composed of a mixture of ammonium formate (0.5 mM) and acetonitrile (25:75, v/v) was suggested as optimal for the simultaneous analysis of DEX and its metabolites on ZIC HILIC. Thereafter, HILIC-LC-MS analysis of DEX and all its metabolites was performed for the first time to obtain basic data about the applicability of the suggested chromatographic conditions. Hence, this study demonstrates that HILIC could be a viable solution for the challenging analysis of moderately polar parent drug along with its highly polar metabolites including the ability to separate structurally very similar compounds, such as positional isomers.  相似文献   

14.
Stationary phase selectivities for halogenated compounds in reversed-phase HPLC were compared using C18 monolithic silica capillary columns modified with poly(octadecyl methacrylate) (ODM) and octadecyl moieties (ODS). The preferential retention of halogenated benzenes on ODM was observed in methanol/water and acetonitrile/water mobile phases. In selectivity comparison of selected analytes on ODM and ODS, greater selectivities for halogenated compounds were obtained with respect to alkylbenzenes on an ODM column, while similar selectivities were observed with a homologous series of alkylbenzenes on ODM and ODS columns. These data can be explained by greater dispersive interactions by more densely packed octadecyl groups on the ODM polymer coated column together with the contribution of carbonyl groups in ODM side chains. For the positional isomeric separation of dihalogenated benzenes (ortho-, meta-, para-), the ODM column also provided better separation of these isomers for the adjacently eluted isomers that cannot be completely separated on an ODS column in the same mobile phase. These results imply that the ODM column can be used as a better alternative to the ODS column for the separation of other halogenated compounds.  相似文献   

15.
16.
The separation of basic compounds in high-pH mobile phases results in extended retention, excellent peak shapes and good chromatographic efficiency. A severe decrease in sensitivity with electrospray mass spectrometric detection in positive ion mode (ESI+-MS) is expected under conditions that suppress analyte ionization in solution. We compared the responses of a large number of various basic drugs covering a wide range of hydrophobic (log P 0.09 to 7.6) and basic character (pKa 6.8-10) in LC-ESI+-MS/MS in 0.1% formic acid in water and acetonitrile, to responses in 10mM ammonium hydrogencarbonate buffers of different pH (7.8-11), and acetonitrile. Contrary to common expectations, high-pH mobile phases do not affect negatively the responses of basic compounds in ESI+. Analyte responses and limits of detection are comparable, or most often better in high pH compared to acidic mobile phases.  相似文献   

17.
《Analytical letters》2012,45(14):2699-2723
Abstract

High pressure liquid chromatographic (HPLC) and spectrophotometric methods are developed for the determination of two multicomponent mixtures containing guaiphenesin, dextromethorphane hydrobromide, and sodium benzoate together with either phenylephrine hydrochloride, chlorpheniramine maleate, and butylparaben (mixture 1) or ephedrine hydrochloride and diphenhydramine hydrochloride (mixture 2). The HPLC method depended on using an ODS column with mobile phase consisting of acetonitrile ?10 mM potassium dihydrogen phosphate, pH 2.7 (40∶60 v/v) containing 5 mM heptane sulfonic acid sodium salt (for mix 1) and a cyanopropyl column with mobile phase consisting of acetonitrile ?12 mM ammonium acetate, pH 5 (40∶60 v/v) (for mix 2) and UV detection at 214 nm. The cyanopropyl column is much less hydrophobic, less sterically restricted to the penetration of bulky solute molecules into the stationary phase, and has weaker hydrogen‐bond acidity than the ODS column. So the cyanopropyl column is more suitable for separation of components of mix 2. The chemometric‐assisted spectrophotometric method with, principal component regression (PCR) and partial least squares (PLS‐1) was used. For the chemometric method a calibration set of the mixture consisting of each compound in each mixture was prepared in distilled water. The absorbance data in the UV spectra were measured in the spectral region (210–240 or 210–224 nm for mix 1 and mix 2, respectively, as this range provided the greatest amount of information about the two mixture components). The spectrophotometric method does not require a separation step. The proposed methods were successfully applied for the analysis of the two multicomponents combinations in laboratory‐prepared mixtures and in commercial syrups, and the results were compared with each other.  相似文献   

18.
This paper introduces a design of experiments (DOE) approach for method optimisation in hydrophilic interaction chromatography (HILIC). An optimisation strategy for the separation of acetylsalicylic acid, its major impurity salicylic acid and ascorbic acid in pharmaceutical formulations by HILIC is presented, with the aid of response surface methodology (RSM) and Derringer's desirability function. A Box-Behnken experimental design was used to build the mathematical models and then to choose the significant parameters for the optimisation by simultaneously taking both resolution and retention time as the responses. The refined model had a satisfactory coefficient (R2>0.92, n=27). The four independent variables studied simultaneously were: acetonitrile content of the mobile phase, pH and concentration of buffer and column temperature each at three levels. Of these, the concentration of buffer and its cross-product with pH had a significant, positive influence on all studied responses. For the test compounds, the best separation conditions were: acetonitrile/22 mM ammonium acetate, pH 4.4 (82:18, v/v) as the mobile phase and column temperature of 28°C. The methodology also captured the interaction between variables which enabled exploration of the retention mechanism involved. It would be inferred that the retention is governed by a compromise between hydrophilic partitioning and ionic interaction. The optimised method was further validated according to the ICH guidelines with respect to linearity and range, precision, accuracy, specificity and sensitivity. The robustness of the method was also determined and confirmed by overlying counter plots of responses which were derived from the experimental design utilised for method optimisation.  相似文献   

19.
A hydrophilic monolithic CEC column was prepared by thermal copolymerization of zwitterionic monomer 2‐methacryloyloxyethyl phosphorylcholine (MPC), pentaerythritol triacrylate (PETA), either methacrylatoethyl trimethyl ammonium chloride (META) or sodium 2‐methylpropene‐1‐sulfonate (MPS) in a polar binary porogen consisting of methanol and THF. A typical hydrophilic interaction LC retention mechanism was observed for low‐molecular weight polar compounds including amides, nucleotides, and nucleosides in the separation mode of hydrophilic interaction CEC, when high content of ACN (>60%) was used as the mobile phase. The effect of the electrostatic interaction between the analytes and the stationary phase was found to be negligible. The poly(MPC‐co‐PETA‐co‐META or MPS) monolithic columns have an average column efficiency of 40 000 plates/m and displayed with a satisfactory repeatability in terms of migration time and peak areas. Finally, the column was successfully applied to determine the impurities of a positively charged drug pramipexole which are often separated by ion pair RP chromatography due to their high hydrophilicity. All four components can be baseline separated within 5 min with BGE consisting of ACN/20 mM ammonium formate buffer (pH 3.0; 80/20).  相似文献   

20.
The performance of isocratic separations of 11 pollutant phenols (PP) using monolithic (Chromolith RP-18e) and conventional reversed-phase 5 microm (Luna and Purospher C18) and 4 microm (Synergi C12) particulate size columns, selected from high purity silica materials, has been compared. The separations have been optimized based on a previously optimized separation in which a reversed-phase C18 Luna column and acetonitrile as organic modifier were used, allowing the separation of all phenols tested in 23 min. The optimization process was carried out for each column by studying the effect of the mobile phase (acetonitrile as organic modifier, pH, flow-rate) on phenols separation. Under the optimized separation conditions, all phenols were separated in less than 23 min for all columns tested. Asymmetry factors were further evaluated and used to estimate column efficiency using the Dorsey-Foley equation. The efficiency and asymmetry factors were lower for Chromolith than for Purospher and Luna columns respectively. The Chromolith column was finally selected, due to its lower flow resistance, analysis time and good efficiency and asymmetry factors. The PPs separation was achieved in 3 min. The asymmetry factors were in the range 0.9-1.5 using 50mM acetate buffer (pH = 5.25)-ACN (64:36, v/v) as mobile phase, T=45 degrees C and 4.0 ml min(-1) flow-rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号