首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
Microaxial tomography provides a good means for microscopic image acquisition of cells or sub-cellular components like cell nuclei with an improved resolution, because shortcomings of spatial resolution anisotropy in optical microscopy can be overcome. Thus, spatial information of the object can be obtained without the necessity of confocal imaging. Since the very early developments of microaxial tomography, a considerable drawback of this method was a complicated image acquisition and processing procedure that requires much operator time. In order to solve this problem the Heidelberg 2π-tilting device has been mounted on the Brno high-resolution cytometer as an attempt to bring together advanced microscopy and fast automated computer image acquisition and analysis. A special software module that drives all hardware components required for automated microaxial tomography and performs image acquisition and processing has been developed. First, a general image acquisition strategy is presented. Then the procedure for automation of axial tomography and the developed software module are described. The rotation precision has been experimentally proved followed by experiments with a specific biological example. For this application, also a method for the preparation of cell nuclei attached to glass fibres has been developed that allows for the first time imaging of three-dimensionally conserved, fluorescence in situ hybridisation-stained cell nuclei fixed to a glass fibre.  相似文献   

2.
单一探测器实现多维度信息获取是光电探测未来的发展方向。针对目标探测中能量和偏振信息不能兼顾的问题,提出了一种同时具有偏振-微光功能的像元阵列结构。通过引入白光通道和精简偏振通道,可在EMCCD器件上实现偏振和微光探测的一体化集成。实验结果表明,在微光条件下,探测器高灵敏性能被保持,低照度下的成像质量几乎不衰减;偏振模式下,白光通道和两个偏振角度使探测器能够获得足够的偏振信息,实现对目标的偏振探测。该方法实现了高灵敏度成像探测和偏振信息探测的同步获取,是一种通过算法处理就能够实现探测模式可重构的新方法。  相似文献   

3.
With the increasing interest in phased arrays in magnetic resonance imaging, imaging system receivers capable of acquiring larger number of parallel signals are needed. Suggested techniques for rapid imaging propose the use of arrays with as many as 128 elements. While simply duplicating the number of receiver chains as needed is a viable technique, it quickly becomes both cumbersome and expensive.Time domain multiplexing offers an alternative solution to this problem. By using RF multiplexing switches, a single receiver can be upgraded to an array receiver capable of multi-channel data acquisition giving users array capability. Additionally, it can be used to dramatically increase acquisition capability of multiple receiver systems.This paper reports results from a multiplexing system upgrade, which converts a single channel standard clinical imaging system to a 16-channel array system. The upgrade includes both the RF multiplexing front-end and an external data acquisition system with image processing capability. Issues concerning the implementation of high channel-count multiplexers are also discussed.  相似文献   

4.
超分辨率技术是当今图像处理领域的一个具有挑战意义的课题。在图像获取的过程中,受到成像条件以及成像方式的各种限制,成像系统不能获取原始图像场景中的全部信息。如何提高图像的空间分辨率一直以来都是图像处理领域的热点问题,图像超分辨率技术被认为是解决这一问题的有效方法。介绍了图像超分辨率复原的一般方法,以及国内外研究进展。  相似文献   

5.
As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.  相似文献   

6.
为了实现被动式三维形貌获取技术, 首先利用光线追迹方法从理论上对集成成像阵列式多角度图像获取技术进行了深入分析;对于元素图像阵列中同名像点的间距和三维物点位置之间的关联性进行了理论分析;在此基础上提出了集成成像同名像点三维形貌获取方法。实验结果显示, 本文提出的集成成像同名像点三维形貌获取技术能够获取三维物体的三维形貌和任意三维点的空间坐标。定量实验结果显示获取结果相对误差小于5%, 证实了本文提出的基于集成成像同名像点三维形貌获取技术能够实现三维信息的光学获取。  相似文献   

7.
《Physics Reports》1997,279(1):1-65
Starting from the observation that colour charge is only well defined on gauge invariant states, we construct perturbatively gauge invariant, dynamical dressings for individual quarks. Explicit calculations show that an infra-red finite mass-shell renormalisation of the gauge invariant, dressed propagator is possible and, further, that operator product effects, which generate a running mass, may be included in a gauge invariant way in the propagator. We explain how these fields may be combined to form hadrons and show how the interquark potential can now be directly calculated. The onset of confinement is identified with an obstruction to building a non-perturbative dressing. We propose several methods to extract the hadronic scale from the interquark potential. Various extensions are discussed.  相似文献   

8.
Magnetic resonance imaging is the method of choice for non-invasive detection and evaluation of tumors of the central nervous system. However, discrimination of tumor boundaries from normal tissue, and the evaluation of heterogeneous lesions have proven to be limitations in traditional magnetic resonance imaging. The use of post-image acquisition processing techniques, such as multispectral tissue segmentation analysis, may provide more accurate clinical information. In this report, we have employed an experimental animal model for brain tumors induced by glial cells transformed by the human neurotropic JC virus to examine the utility of multispectral tissue segmentation for tumor cell identification. Six individual tissue types were discriminated by segmentation analysis, including heterogeneous tumor tissue, a clear demarcation of the boundary between tumor and non-tumor tissue, deep and cortical gray matter, and cerebrospinal fluid. Furthermore, the segmentation analysis was confirmed by histopathological evaluation. The use of multispectral tissue segmentation analysis may optimize the non-invasive determination and volumetric analysis of CNS neoplasms, thus providing improved clinical evaluation of tumor growth and evaluation of the effectiveness of therapeutic treatments.  相似文献   

9.
在传统共聚焦显微技术的基础上,图像扫描显微技术使用面阵探测器来代替单点探测器,结合虚拟数字针孔并利用像素重定位和解卷积图像重构算法将传统宽场显微镜的分辨率提高一倍,实现了高信噪比的超分辨共焦成像.但是,由于采用逐点扫描的方式,三维成像速度相对较慢,限制了其在活体样品成像中的应用.为了进一步提高图像扫描显微术的成像速度,本文提出了一种基于双螺旋点扩散函数工程的多焦点图像扫描显微成像方法和系统.在照明光路中,利用高速数字微镜器件产生周期分布的聚焦点阵对样品进行并行激发和快速二维扫描;在探测光路中,利用双螺旋相位片将激发点荧光信号的强度分布转换为双螺旋的形式;最终,利用后期数字重聚焦处理,从单次样品扫描数据中重构出多个样品层的超分辨宽场图像.在此基础上,利用搭建的系统分别对纤维状肌动蛋白和海拉细胞线粒体进行成像实验,证明了该方法的超分辨能力和快速三维成像能力.  相似文献   

10.
The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.  相似文献   

11.
In magnetic resonance imaging, highly parallel imaging using coil arrays with a large number of elements is an area of growing interest. With increasing channel numbers for parallel acquisition, the increased reconstruction time and extensive computer memory requirements have become significant concerns. In this work, principal component analysis (PCA) is used to develop a channel compression technique. This technique efficiently reduces the size of parallel imaging data acquired from a multichannel coil array, thereby significantly reducing the reconstruction time and computer memory requirement without undermining the benefits of multichannel coil arrays. Clinical data collected with a 32-channel cardiac coil are used in all of the experiments. The performance of the proposed method on parallel, partially acquired data, as well as fully acquired data, was evaluated. Experimental results show that the proposed method dramatically reduces the processing time without considerable degradation in the quality of reconstructed images. It is also demonstrated that this PCA technique can be used to perform intensity correction in parallel imaging applications.  相似文献   

12.
高光谱成像具有快速无损和图谱合一的特点,每个波段都会呈现一幅图像,每个像素点都显示一条光谱曲线,不仅可以获取样本的光谱信息,还可以表征物体的空间信息,目前在诸多领域展现出极大的应用价值。采用高光谱成像实现土壤中石油烃含量分布的可视化。制备不同石油烃含量的砖红壤样本,分为建模样本和预测样本。采集高光谱图像,为避免图像背景的干扰,采用掩膜的方法进行背景剔除。之后提取建模样本中感兴趣区域的平均光谱,采用连续投影算法筛选特征变量,基于提取的特征变量,一方面建立MLR预测模型,另一方面从预测样本中提取特征波段的高光谱图像。最后,将特征图像上像素点的数据代入模型,得到石油烃的含量分布情况。通过图像处理的方法,不同的含量赋予不同的颜色,实现砖红壤中石油烃含量分布的可视化。研究结果表明,采用高光谱成像与图像处理方法能够初步实现砖红壤中石油烃含量分布的可视化,为以后大范围地识别和反演土壤中石油烃含量提供了基础。  相似文献   

13.
Accelerating the imaging speed without sacrificing image structures plays an important role in magnetic resonance imaging. Under-sampling the k-space data and reconstructing the image with sparsity constraint is one efficient way to reduce the data acquisition time. However, achieving high acceleration factor is challenging since image structures may be lost or blurred when the acquired information is not sufficient. Therefore, incorporating extra knowledge to improve image reconstruction is expected for highly accelerated imaging. Fortunately, multi-contrast images in the same region of interest are usually acquired in magnetic resonance imaging protocols. In this work, we propose a new approach to reconstruct magnetic resonance images by learning the prior knowledge from these multi-contrast images with graph-based wavelet representations. We further formulate the reconstruction as a bi-level optimization problem to allow misalignment between these images. Experiments on realistic imaging datasets demonstrate that the proposed approach improves the image reconstruction significantly and is practical for real world application since patients are unnecessarily to stay still during successive reference image scans.  相似文献   

14.
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps.  相似文献   

15.
磁共振成像(Magntic Resonance Imaging,MRI)技术是一种先进的医疗影像技术.在MRI系统中,通过梯度线圈电流快速切换方向,对待测区域施加梯度磁场,产生的梯度磁场会在其周围的金属体内激发出变化的涡旋电场,进而导致金属体内闭合的回路中产生对原来的梯度电流起抑制作用的感生电流,也就是我们所说的涡流.本文介绍了一种测量磁体涡流场的方法,结合电磁感应定律,设计了一种磁体涡流场测量装置,通过硬件采集以及软件处理的方法,将理想梯度场与实际磁场进行相减并将波形实时呈现,实验结果表明该方法可实现对磁体涡流场的测量.  相似文献   

16.
An extension of the product operator formalism of NMR is introduced, which uses the Hadamard matrix product to describe many simple spin 1/2 relaxation processes. The utility of this formalism is illustrated by deriving NMR gradient-diffusion experiments to simulate several decoherence models of interest in quantum information processing, along with their Lindblad and Kraus representations.  相似文献   

17.
18.
Phase‐sensitive X‐ray imaging methods can provide substantially increased contrast over conventional absorption‐based imaging, and therefore new and otherwise inaccessible information. Differential phase‐contrast (DPC) imaging, which uses a grating interferometer and a phase‐stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post‐processing of data to enable a high‐throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample. A novel aquarium design allows a vertical rotation axis below the sample with measurements performed in aqueous environment. Optimization of the data acquisition procedure enables a full phase volume (1024 × 1024 pixels × 1000 projections × 9 phase steps, i.e. 9000 projections in total) to be acquired in 20 min (with a pixel size of 7.4 µm), and the subsequent post‐processing has been integrated into the beamline pipeline for sinogram generation. Local DPC tomography allows one to focus with higher magnification on a particular region of interest of a sample without the presence of local tomography reconstruction artifacts. Furthermore, `widefield' imaging is shown for DPC scans for the first time, enabling the field of view of the imaging system to be doubled for samples that are larger than the magnification allows. A case study is illustrated focusing on the visualization of soft tissue features, and particularly the substantia nigra of a rat brain. Darkfield images, based on local X‐ray scattering, can also be extracted from a grating‐based DPC scan: an example of the advantages of darkfield contrast is shown and the potential of darkfield X‐ray tomography is discussed.  相似文献   

19.
Three-Dimensional Information Acquisition Using a Compound Imaging System   总被引:1,自引:0,他引:1  
The TOMBO (thin observation module by bound optics) system is a compound imaging system inspired by a biological visual system. Various interesting features can be utilized in the applications of the TOMBO system: in this paper, we present an effective method for three-dimensional information acquisition. An image captured by the TOMBO system is composed of multiple images observed from several viewpoints. Distance between the TOMBO system and an object can be estimated using disparity of the captured images. A new method for estimation of the object distance is introduced. In the experiment, multiple object distances can be successfully estimated by the proposed method. Using the obtained distances for image reconstruction, we can generate a composite image focussing on multiple objects.  相似文献   

20.
Li JX  Wu HJ  Li G  Lin L 《光谱学与光谱分析》2010,30(11):3072-3075
因高光谱成像技术具有灵敏度高、蕴含图谱信息丰富等特点,使其有望被作为突破口来解决中医证候诊断缺乏客观指标的困境。鉴于舌与证候之间存在复杂且模糊的映射关系,针对当前舌信息采集方式的局限性以及现有处理模式存在将混合信息体割裂提取以致重要内涵丢失的缺陷,提出了一种新思路:采用高光谱技术进行舌象采集并将舌体交叠混合的图谱信息作为一个整体进行分析,结合多种线性与非线性数据挖掘算法以黑箱模式关联证候,提取特异性光谱指标群。并将所提取的光谱指标群综合临床的生理、生化及中医症征指标,从多角度分析病因病机的机理,找到一种证候客观诊断的新模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号