首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work deals with the determination of free sulfite in wine by zone electrophoresis (ZE) with on-line isotachophoresis (ITP) sample pretreatment on a column-coupling (CC) chip with conductivity detection. A rapid pre-column conversion of sulfite to hydroxymethanesulfonate (HMS), to minimize oxidation losses of the analyte, was included into the developed analytical procedure, while ITP and ZE were responsible for specific analytical tasks in the separations performed on the CC chip. ITP, for example, eliminated the sample matrix from the separation compartment and, at the same time, provided a selective concentration of HMS before its transfer to the ZE stage of the separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions favoring a sensitive conductivity detection of HMS. In this way, ITP and ZE cooperatively contributed to a 900 microg/l concentration detectability for sulfite as attained for a 60 nl load of wine (a 15-fold wine dilution and the use of a 0.9 microl sample injection channel of the chip) and, consequently, to the determination of free sulfite when this was present in wine at the concentrations as low as 3 mg/l. The separations were carried out in a closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, made a frame for precise migration and quantitation data as achieved for HMS in both the model and wine samples. Ninety percent recoveries, as typically obtained for free sulfite in wine samples, indicate promising potentialities of the present method as far as the accuracies of the provided analytical results are concerned.  相似文献   

2.
The development and optimization of on-line microdistillation for free and total sulfite (S(IV)) in grape juice and wine is reported. The microstill used both heat and an air stream to separate sulfur dioxide from the wine samples; the distillation product was captured in a peroxide solution, and converted to sulfuric acid, mirroring accepted industry practice. Measured from 1 to 300 mg L−1 as SO2 by conductance, sample throughputs of 60 h−1 for free and 20 h−1 for total sulfite were achieved. Data for bound S(IV) emphasises the slow kinetics of release reactions in some wines. The microstill method is more efficient for total sulfite than the accepted manual technique. Good correlation was found between the microstill and manual methods under specified control conditions.  相似文献   

3.
高效液相色谱-荧光检测法测定葡萄酒中总亚硫酸盐   总被引:5,自引:0,他引:5  
卫锋  陈明生  于玲  常丽  李冬敏 《色谱》1999,17(6):583-585
 摘要:建立了测定葡萄酒中总亚硫酸盐的高效液相色谱方法。N-(9-吖啶基)马来酰亚胺与样品中亚硫酸盐反应生成一种较强的荧光络合物,利用荧光检测器进行检测。方法具有样品用量少、操作简便、灵敏度高等特点,回收率为98.0%~103.0%,相对标准偏差小于4.6%。  相似文献   

4.
Sulfite oxidase is immobilized on collagen membrane at the surface of a platinum electrode and catalyzes the oxidation of sulfite to sulfate with stoichiometric production of hydrogen peroxide. The hydrogen peroxide is detected amperometically at the platinum electrode at an applied potential of 700 mV. The system responds linearly to sulfite in the range 1–150 μM, with a detection limit of 0.2 μM. The enzyme retains over 95% of its activity for three weeks if stored at ?20° C when the probe is not in use.  相似文献   

5.
Sample pre-concentration by isotachophoresis in microfluidic devices   总被引:1,自引:0,他引:1  
We have designed microfluidic devices with the aim of coupling isotachophoresis (ITP) with zone electrophoresis (ZE) as a method to increase the concentration limit of detection in microfluidic devices. We used plastic multi-channel chips, designed with long sample injection channel segments, to increase the sample loading. The chip was designed to allow stacking of the sample into a narrow band by discontinuous ITP buffers and subsequent separation in the ZE mode. In the ITP-ZE mode, with a 2-cm long sample injection plug, sensitivity was increased by 400-fold over chip ZE and we found that the separation performance after the ITP stacking was comparable to that of regular chip ZE. We report sub-picomolar limits of detection of fluorescently labeled ACLARA eTag reporter molecules electrokinetically injected from cell lysate sample matrixes containing moderate salt concentrations. We evaluated sample injections from buffers with varied ionic strengths and found that efficient stacking and separations were obtained in both low and high conductivity buffers, including physiological buffer with at least 140 mM salt. We applied ITP-ZE to the analysis of a cell surface protease (ADAM 17) which used live intact cells in physiological buffers with detection limits below 10 cells/assay.  相似文献   

6.
An appropriate combination of separation mechanisms (simultaneous use of differences in pK values, host-guest complexations, and the ionic strength dependences of the actual ionic mobilities) provided zone electrophoresis (ZE) resolution of 22 organic and inorganic acids expected in wines on a polymethylmethacrylate (PMMA) chip with integrated conductivity detection. These separating conditions offered a framework for the ZE determination of organic acids responsible for some important organoleptic characteristics of wines (tartrate, malate, succinate, acetate, citrate, and lactate). The ZE procedure developed in this context is simple and rapid (ca. 10 minutes' analysis time), while affording reproducible migration and quantitation data for the acids. For example, 0.8-2.0% RSD values characterized the migration times of the acids for 25 repeated ZE runs with the same sample carried out in 5 days in the background electrolyte solution prepared freshly on a daily basis, while 3-5% RSD values were typical for the accompanying peak area data. The concentration ranges within which the acids of analytical interest could be determined in one ZE run covered all wine samples included in our study (100-400-fold sample dilutions were needed to work under the conditions corresponding to the validities of the calibration data). 90-110% recoveries of the acids as obtained repeatedly for one of the reference wine samples used in our experiments indicate a good predisposition of the present method to provide accurate analytical results. This statement also supports the results from the determination of the acids in reference wine samples with claimed concentrations of malic (five samples), tartaric (one sample), and lactic (one sample) acids.  相似文献   

7.
This feasibility study deals with the separations of proteins by an on-line combination of zone electrophoresis (ZE) with isotachophoresis (ITP) on a poly(methylmethacrylate) column-coupling (CC) chip with integrated conductivity detection. ITP and ZE provided specific analytical functions while performing the cationic mode of the separation. ITP served, mainly, for concentrations of proteins and its concentrating power was beneficial in reaching a low dispersion transfer (injection) of the proteinous constituents, loaded on the CC chip in a 960 nL volume, into the ZE separation stage. This was complemented by an electrophoretically driven removal of the sample constituents migrating in front of the focused proteins from the separation system before the ZE separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions providing the resolutions and sensitive conductivity detections of the test proteins. In this way, ITP and ZE cooperatively contributed to low- or sub-microg/mL concentration detectabilities of proteins and their quantitations at 1-5 microg/mL concentrations. However, a full benefit in concentration detectabilities of proteins, expected from the use of the ITP-ZE combination, was not reached in this work. Small adsorption losses of proteins and detection disturbances in the ZE stage of separation, very likely due to trace constituents concentrated by ITP, appear to set limits in the detection of proteins in our experiments. The ITP-ZE separations were carried out in a hydrodynamically closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows of the electrolyte solutions. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, undoubtedly contributed to highly reproducible migrations of the separated proteins (fluctuations of the migration time of a particular protein were typically 0.5% RSD in repeated ITP-ZE runs).  相似文献   

8.
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected.  相似文献   

9.
This review focuses on capillary electrophoretic separations performed on capillary electrophoresis chips (CE chips) with hydrodynamically closed separation systems in a context with transport processes (electroosmotic flow (EOF)) and hydrodynamic flow (HDF)) that may accompany the separations in these devices. It also reflects some relevant works dealing with conventional CE operating under such hydrodynamic conditions. The use of zone electrophoresis (ZE), isotachophoresis (ITP) and their on-line combination (ITP-ZE) on the single-column and column-coupling CE chips with the closed separation systems and related problems are key topics of the review. Some attention is paid to sample pretreatment in the separations performed on the CE chips. Here, mainly potentialities of the ITP-ZE combination in trace analysis applications of the miniaturized systems are discussed in a broader extent. Links between the ZE separation and detection provide a frame for the discussion of current status of the detection on the CE chips. Analytical applications illustrate potentialities of the CE chips operating with the closed separation systems (suppressed HDF and EOF) to the determination of small ions present in various matrices by ZE, ITP and ITP-ZE.  相似文献   

10.
An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV–Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V (vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 μM sulfite with a sensitivity of 2.19 mA M−1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8% and lost 20% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample. Figure Schematic of the bioelectrocatalytic sulfite sensor: sulfite oxidase (green) oxidizes sulfite to sulfate and transfers electrons via heme b 5 to cyt c (red) and thence to the gold electrode  相似文献   

11.
Yao T  Satomura M  Nakahara T 《Talanta》1994,41(12):2113-2119
A flow-injection system is proposed for the simultaneous determination of sulfite and phosphate in wine. A sulfite oxidase immobilized reactor and purine nucleoside phosphorylase-xanthine oxidase co-immobilized reactor are incorporated at fixed positions (parallel configuration) in the flow line, which is based on the splitting of the flow after sample injection and subsequent confluence. A poly(1,2-diaminobenzene)-coated platinum electrode is used as an amperometric detector to detect selectively hydrogen peroxide generated enzymatically in the enzyme reactors, without any interference from oxidizable species and proteins present in wine. Because each channel has a different residence time, two peaks are obtained. The first peak corresponds to sulfite and the second peak to phosphate. The peak current is linearly related to the concentrations of sulfite between 1 × 10−5 and 2 × 10−3M and phosphate between 2 × 10−5 and 5 × 10−3M. The simultaneous determination of sulfite and phosphate in wine can be performed at a rate of 30 samples/hr with satisfactory precision (less than 1.2% RSD) and no pretreatment except for the sample dilution.  相似文献   

12.
A simple method is described to determine sulfite in beer samples using a fill and flow channel biosensor. A droplet of sample is placed into the inlet of a rectangular flow cell and begins to flow through the channel by capillarity. The flow is maintained and controlled by a porous outlet plug of defined porosity. In a rectangular flow cell, the sample solution flows through three consecutive zones: over a predictor electrode, an enzyme layer and a detector electrode. Together these three zones enable the differentiation between current due to sulfite and current due to other electroactive species in the sample. The predictor electrode is located upstream, and on the opposite channel wall to the enzyme layer and detector electrode, and is poised at the same potential (+0.65 V versus Ag/AgCl) as the detector electrode. On this electrode, the current contribution from all species in the sample solution that are oxidized at that potential is determined. The enzyme layer contains sulfite oxidase, which, in the process of oxidizing sulfite, produces hydrogen peroxide, which itself is reduced by excess sulfite. The current at the downstream detector electrode is therefore different from that at the predictor electrode as a result of the enzyme reaction and the difference of the currents, corrected for the dimensions of the electrodes, is proportional to the concentration of sulfite. The method enables a straightforward correction of the interfering current at the detector electrode and a determination of the analyte concentration. The effect of interferences from ascorbic acid, ethanol, sorbic acid and tartaric acid in the detection of sulfite is efficiently removed. The concentration of sulfite in a sample of beer measured by the biosensor is equivalent to that measured using a reference method based on the AOAC-recommended Monier-Williams method.  相似文献   

13.
Suppressed ion chromatography (IC) based on in-sample oxidation and SPE is described for total sulfur dioxide determination in red wines. In this method, sulfur dioxide was converted to stable sulfate ion through a simple H2O2 oxidation step and then the impurities were removed with C-18 micro-column SPE pretreatment. Finally, the sulfate was determined by suppressed ion chromatography coupled with conductivity detection and the content of total sulfur dioxide could be obtained through sulfate content by blank deduction method. By using a mixture of NaHCO3 and Na2CO3 as mobile phase, the analysis of one sample with nine anions could be completed within 25 min. For sulfate detection, a linear calibration curve with correlation coefficient of 0.9993 was obtained from the peak area with low detection limit (0.45 mg L?1, 3σ) and excellent repeatability (RSD?=?1.12%, n?=?6). This method was applied to sulfur dioxide determination in real wine samples and compared with conventional iodometry.  相似文献   

14.
Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α = β = 0.05) at 60 °C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively.  相似文献   

15.
A new automated spectrophotometric method for the determination of total sulfite in white and red wines is reported. The assay is based on the reaction of o-phthalaldehyde (OPA) and ammonium chloride with the analyte in basic medium under SI conditions. Upon on-line alkalization with NaOH, a blue product is formed having an absorption maximum at 630 nm. The parameters affecting the reaction - temperature, pH, ionic strength, amount concentration and volume of OPA, amount concentration of ammonium chloride, flow rate and reaction coil length - and the gas-diffusion process - sample and HCl volumes, length of mixing coil, donor flow rate - were studied. The proposed method was validated in terms of linearity (1-40 mg L−1, r = 0.9997), limit of detection (cL = 0.3 mg L−1) and quantitation (cQ = 1.0 mg L−1), precision (sr = 2.2% at 20 mg L−1 sulfite, n = 12) and selectivity. The applicability of the analytical procedure was evaluated by analyzing white and red wine samples, while the accuracy as expressed by recovery experiments ranged between 96% and 106%.  相似文献   

16.
The interference of sulfite (sulfur dioxide) with the 4-aminoantipyrine (4-AAP) spectrophotometric method for phenol is discussed for procedures without distillation, and with distillation in the absence and presence of copper(II) sulfate. Sulfite represses the color development in all these procedures. Without chloroform extraction, the maximum tolerable amounts of sulfite in the procedures without distillation, distillation without copper(II) sulfate, and distillation with copper(II) sulfate are 15, 10, and 20 mg/100 ml, respectively. For the extraction method, the limits are 4.0, 4.0, and 10 mg/ 100 ml, respectively. Copprer(II) sulfate catalyzes the air-oxidation of sulfite. Phenol can be determined in the presence of large amounts of sulfite by treating with sulfide to form polythionates and thiosulfate; excess of sulfide is removed with copper(II) sulfate, sulfuric acid is added, the phenol is distilled, and the 4-AAP method is applied. Improvements are made in the overall accuracy of the 4-AAP method.  相似文献   

17.
Ion chromatography of sulfide, sulfite, sulfate and thiosulfate in a mixture is often difficult because of instability of sulfide and sulfite, poor separation of sulfide from common anions such as bromide or nitrate and similar elution-times for sulfite and sulfate. An ion-pair chromatographic method for the determination of these sulfur anions has been established by stoichiometric conversion of sulfide and sulfite into stable thiocyanate and sulfate, respectively, prior to the chromatographic run. Sulfate, thiosulfate and thiocyanate were resolved on an octadecylsilica column with an acetonitrile-water mobile phase containing tetrapropylammonium salt (TPA) as an ion-paring reagent, and thiosulfate and thiocyanate in the effluent could be measured with a photometric detector (220 nm) and sulfate with a suppressed conductivity detector. When an acetonitrile-water (6:94, v/v) mobile phase (pH 5.0) containing 15 mM TPA and small amounts of acetic acid was used at a flow-rate of 0.6 ml min(-1), the three anions could be eluted within 32 min. Calibration plots of peak height versus concentration for sulfide (detected as thiocyanate) and thiosulfate gave straight lines up to 35 and 60 microM, respectively. The calibration plot for sulfide coincided with that obtained by using thiocyanate. A calibration plot for sulfite, measured as sulfate, was also linear up to 135 microM and was in accord with that of sulfate. Each calibration plot gave a correlation coefficient greater than 0.999. For six replicates obtained for a mixture of 30.0 microM sulfide, 50.0 microM sulfite, 50.0 microM sulfate and 20.0 microM thiosulfate, the proposed method gave a mean value of 30.1 microM with a standard deviation (SD) of 0.77 microM and a relative standard deviation (RSD) of 2.6% for sulfide, 101 microM (SD = 3.5 microM, RSD = 3.5%) for the total of sulfite and sulfate and 20.1 microM (SD = 0.44 microM, RSD = 2.2%) for thiosulfate. Recoveries for sulfide, sulfite plus sulfate, and thiosulfate in hot-spring water samples using the proposed method were found to be quantitative.  相似文献   

18.
Sezgintürk MK  Dinçkaya E 《Talanta》2005,65(4):998-1002
In the work described here, a biosensor was developed for the determination of sulfite in food. Malva vulgaris tissue homogenate containing sulfite oxidase enzyme was used as the biological material. M. vulgaris tissue homogenate was crosslinked with gelatin using glutaraldehyde and fixed on a pretreated Teflon membrane. Sulfite was enzymatically converted to sulfate in the presence of the dissolved oxygen, which was monitored amperometrically. Sulfite determination was carried out by standard curves, which were obtained by the measurement of consumed oxygen level related to sulfite concentration. Several operational parameters had been investigated: the amounts of plant tissue homogenate and gelatin, percentage of glutaraldehyde, optimum pH and temperature. Also, some characterization studies were done. There was linearity in the range between 0.2 and 1.8 mM at 35 °C and pH 7.5. The results of real sample analysis obtained with the biosensor agreed well with the enzymatic reference method using spectrophotometric detection.  相似文献   

19.
Determination of sulfite with emphasis on biosensing methods: a review   总被引:1,自引:0,他引:1  
Sulfite is used as a preservative in a variety of food and pharmaceutical industries to inhibit enzymatic and nonenzymatic browning and in brewing industries as an antibacterial and antioxidizing agent. Convenient and reproducible analytical methods employing sulfite oxidase are an attractive alternative to conventional detection methods. Sulfite biosensors are based on measurement of either O2 or electrons generated from splitting of H2O2 or heat released during oxidation of sulfite by immobilized sulfite oxidase. Sulfite biosensors can be grouped into 12 classes. They work optimally within 2 to 900 s, between pH 6.5 and 9.0, 25 and 40 °C, and in the range from 0 to 50,000 μM, with detection limit between 0.2 and 200 μM. Sulfite biosensors measure sulfite in food, beverages, and water and can be reused 100–300 times over a period of 1–240 days. The review presents the principles, merits, and demerits of various analytical methods for determination of sulfite, with special emphasis on sulfite biosensors.  相似文献   

20.
The electrochemical oxidation of sulfite catalyzed by acetylferrocene (AFc) at a glassy carbon electrode (GCE) in 0.2 M NaClO4 aqueous solution has been studied by cyclic voltammetry. Although sulfite itself showed a sluggish electrochemical response at the GCE, the response could be enhanced greatly by using AFc as a mediator, which enables a sensitive determination of the substrate (sulfite). The reaction rate constant for catalytic oxidation was evaluated as (7.02 ± 0.05) × 104 M ?1 s?1 by chronoamperometry. Experimental conditions that maximize the current efficiency of the electrocatalytic oxidation, such as the pH and both the catalyst (AFc) and substrate (sulfite) concentrations, were also investigated. The electrochemical kinetics of electrocatalytic oxidation of sulfite by AFc has been studied by cyclic voltammetry. In the presence of 5 × 10?4 M AFc, the oxidation current is proportional to the sulfite concentration and the calibration plot was linear over the concentration range 2 × 10?4–2.4 × 10?3 M . This result can be applied in the determination of real samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号