首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

2.
This study concerns the effect of particle aggregation on laser heating rate of soot aggregates in laser-induced incandescence. Three aggregate absorption models were investigated: the Rayleigh-Debye-Gans approximation, the electrostatics approximation, and the numerically exact generalized multi-sphere Mie-solution method. Fractal aggregates containing 5-893 primary particles of 30 nm in diameter were generated numerically using a combined particle-cluster and cluster-cluster aggregation algorithm with specific fractal parameters typical of soot. The primary particle size parameters considered are 0.089, 0.177, and 0.354. The Rayleigh-Debye-Gans approximation neglects the effect of particle aggregation on absorption; so it underestimates the aggregate absorption cross-section area by approximately 10%, depending on the aggregate size and primary particle size parameter. The electrostatics approximation is somewhat better than the Rayleigh-Debye-Gans approximation, but cannot account for the effect of primary particle size parameter. The aggregate absorption submodel affects the calculated soot temperature in laser-induced incandescence mainly in the low laser fluence regime. At high laser fluences, the effect diminishes due to the enhanced importance of soot sublimation cooling and neglect of aggregation effect in the sublimation in the present numerical model of laser-induced incandescence.  相似文献   

3.
Flame-generated soot was heated using a pulsed laser, and temperatures of the irradiated soot were inferred by fitting the Planck function to spectrally resolved laser-induced incandescence with the temperature as an adjustable parameter. The effect of the wavelength dependence of the emissivity on the inferred temperatures of the irradiated soot was studied using selected expressions for the soot emissivity in the fit. Depending upon the choice of the functional form of the emissivity, the maximum temperature reached by the soot during the laser pulse was calculated to span a range of 341 K (3475–3816 K) at a 1064-nm laser fluence of 0.1 J/cm2 and 456 K (4115–4571 K) at a 1064-nm laser fluence of 0.4 J/cm2 with a 1σ standard deviation about the mean of ∼25 K. Comparison of the present results with temperature measurements from previous studies suggests that the emissivity may depend on flame conditions and that further investigation on the subject is needed. The use of two-color or spectrally resolved LII to infer the soot temperature during or after laser heating requires a careful characterization of the wavelength dependence of the emissivity. The spread in temperature leads to large uncertainties regarding the physico-chemical processes occurring at the surface of the soot during the laser heating.  相似文献   

4.
The effect of multiple laser pulses reaching soot particles before an actual laser-induced incandescence (LII) measurement is investigated in order to gain some insights on soot morphological and fine structure changes due to rapid laser heating. Soot, extracted from a premixed and a quenched diffusion flames, is flowing through a tubular cell and undergoes a variable number of pulses at different fluence. The response of soot is studied by the two-color LII technique. Transmission electron microscopy (TEM) analysis of laser-modified soot aggregates from the diffusion flame is also presented. The results indicate that even at low laser fluences a permanent soot transformation is induced causing an increase in the absorption function E(m). This is interpreted as an induced graphitization of soot particles by the laser pulse heating. At high fluences the vaporization process and a profound restructuring of soot particles affect the morphology of the aggregates. Soot from diffusion and premixed flames behaves in a similar way although this similarity occurs at different fluence levels indicating a different initial fine structure of soot particles.  相似文献   

5.
This study shows how the structure of soot particles within the flame changes due to the relative direction of the swirl flow in a small-bore diesel engine in which significant flame–wall interactions cause about half of the flame travelling against the swirl flow while the other half penetrating in the same direction. The thermophoresis-based particle sampling method was used to collect soot from three different in-flame locations including the flame–wall impingement point near the jet axis and the two 60° off-axis locations on the up-swirl and down-swirl side of the wall-interacting jet. The sampled soot particle images were obtained using transmission electron microscopes and the image post-processing was conducted for statistical analysis of size distribution of soot primary particles and aggregates, fractal dimension, and sub-nanoscale parameters such as the carbon layer fringe length, tortuosity, and spacing. The results show that the jet-wall impingement region is dominated by many small immature particles with amorphous internal structure, which is very different to large, fractal-like soot aggregates sampled from 60° downstream location on the down-swirl side. This structure variation suggests that the small immature particles underwent surface growth, coagulation and aggregation as they travelled along the piston-bowl wall. During this soot growth, the particle internal structure exhibits the transformation from amorphous carbon segments to a typical core–shell structure. Compared to those on the down-swirl side, the soot particles sampled on the up-swirl side show much lower number counts and more compact aggregates composed of highly concentrated primary particles. This soot aggregate structure, together with much narrower carbon layer gap, indicates higher level of soot oxidation on the up-swirl side of the jet.  相似文献   

6.
Soot formation characteristics of a lab-scale pulverized coal flame were investigated by performing carefully controlled laser diagnostics. The spatial distributions of soot volume fraction and the pulverized coal particles were measured simultaneously by laser induced incandescence (LII) and Mie scattering imaging, respectively. In addition, the radial distributions of the soot volume fraction were compared with the OH radical fluorescence, gas temperature and oxygen concentration obtained in our previous studies [1], [2]. The results indicated that the laser pulse fluence used for LII measurement should be carefully controlled to measure the soot volume fraction in pulverized coal flames. To precisely measure the soot volume fraction in pulverized coal flames using LII, it is necessary to adjust the laser pulse fluence so that it is sufficiently high to heat up all the soot particles to the sublimation temperature but also sufficiently low to avoid including a too large of a change in the morphology of the soot particles and the superposition of the LII signal from the pulverized coal particles on that from the soot particles. It was also found that the radial position of the peak LII signal intensity was located between the positions of the peak Mie scattering signal intensity and peak OH radical signal intensity. The region, in which LII signal, OH radical fluorescence and Mie scattering coexisted, expanded with increasing height above the burner port. It was also found that the soot formation in pulverized coal flames was enhanced at locations where the conditions of high temperature, low oxygen concentration and the existence of pulverized coal particles were satisfied simultaneously.  相似文献   

7.
Laser-induced incandescence (LII) was used to derive temperatures of pulsed laser heated soot particles from their thermal emission intensities detected at two wavelengths in a laminar ethylene/air co-annular diffusion flame. The results are compared to those of a numerical nanoscale heat and mass transfer model. Both aggregate and primary particle soot size distributions were measured using transmission electron microscopy (TEM). The model predictions were numerically averaged over these experimentally derived size distributions. The excitation laser wavelength was 532 nm, and the LII signal was detected at 445 nm and 780 nm. A wide range of laser fluence from very low to moderate (0.13 to 1.56 mJ/mm2) was used in the experiments. A large part of the temporal decay curve, beginning 12–15 nsec after the peak of the laser excitation pulse, is successfully described by the model, resulting in the determination of accommodation coefficients, which varies somewhat with soot temperature and is in the range of 0.36 to 0.46. However, in the soot evaporative regime, the model greatly overpredicts the cooling rate shortly after the laser pulse. At lower fluences, where evaporation is negligible, the initial experimental cooling rates, immediately following the laser pulse, are anomalously high. Potential physical processes that could account for these effects are discussed. From the present data the soot absorption function, E(m), of 0.4 at 532 nm is obtained. A procedure for correcting the measured signals for the flame radiation is presented. It is further shown that accounting for the local gas temperature increase due to heat transfer from soot particles to the gas significantly improves the agreement in the temperature dependence of soot cooling rates between model and experiments over a large range of laser fluences.  相似文献   

8.
The effects of morphological structure, water coating, dust mixing and primary particle size distribution on the radiative properties of soot fractal aggregates in atmosphere are investigated using T-matrix method. These fractal aggregates are numerically generated using a combination of the particle-cluster and cluster-cluster aggregation algorithms with fractal parameters representing soot aggregate in atmosphere. The radiative properties of compact aggregate notably deviate from that of the branched one, and the effect of morphology changes on the radiative properties in wet air cannot be neglected. However it is reasonable to use realization-averaged radiative properties to represent that of the aggregates with certain morphology. In wet air, the scattering, absorption and extinction cross-section and symmetry parameter of soot aggregates coated with water notably increase with water shell thickness. The mixing structures of dust have little effect on radiative properties of aggregates, but the volume fraction of dust has an obvious effect on extinction, scattering and absorption cross-section of aggregates when the size parameters are above the Rayleigh limit. Although the primary particle size distribution of soot aggregate has mild effect on the scattering albedo and asymmetry parameter, the deviations of the extinction, scattering, absorption cross-section among the three size distributions are significant in this study. The size distribution has a significant effect on forward scattering of phase function, while the effect can be neglected as the size parameter approaches to the Rayleigh limit.  相似文献   

9.
An auto-compensating laser-induced incandescence (AC-LII) technique was applied for the first time to measure soot volume fraction (SVF) and effective primary particle diameter (dpeff) in a high pressure methane/air non-premixed flame. The measured dpeff profiles had annular structures and radial symmetry, and the particle size increased with increasing pressure. LII-determined SVFs were lower than those measured by a line of sight attenuation (LOSA) technique. The LOSA measured soot volume fractions were corrected for light scattering using the Rayleigh–Debye–Gans polydisperse fractal aggregate (RDG-PFA) theory, the dpeff data, and assumptions regarding the soot aggregate size distribution. The correction dramatically improved agreement between data obtained using these two measurement techniques. Qualitatively, soot volume distributions obtained using LII had more annular shapes than those obtained using LOSA. Nonetheless, it has been demonstrated that the AC-LII technique is very well suited for application in media where attenuation of the excitation laser pulse energy can exceed 45%. This paper also underlines the importance of correcting LOSA SVF measurements for light scattering in high pressure flames. PACS 07-60.-j; 47.70.Pq; 65.80.+n; 78.67.-n  相似文献   

10.
The effect of aggregation on soot radiative properties in the infrared region of the spectrum is numerically investigated using Rayleigh-Debye-Gans theory for fractal aggregates (RDG-FA). In order to use the RDG-FA theory for a wide range of aggregate sizes and wavelengths, the predicted phase functions, scattering and absorption coefficients are compared with a more accurate theory, the integral equation formulation for scattering—IEFS. The importance of scattering when compared with absorption is investigated, as well as the effect of aggregation on the phase function shape and on the scattering cross section. It is concluded that in the case of small aggregates formed with small primary particles the scattering coefficient is negligible compared with the absorption coefficient, and scattering and aggregation of primary particles can be ignored. Thus, the Rayleigh approximation can be used leading to isotropic scattering. In the case of large aggregates constituted by large primary particles, aggregation becomes important and the scattering cross section is of the same order of magnitude of the absorption cross section. Moreover, the phase function becomes highly peaked in the forward direction. Therefore, the Rayleigh and the equivalent volume Mie sphere approximations are not valid, and the RDG-FA method emerges as a good compromise between accuracy and simplicity of application. However, radiative transfer calculations between two infinite, parallel, black walls show that scattering may always be neglected in the calculation of total radiative heat source and heat fluxes to the walls. The minor influence of scattering on the accuracy of the predictions is explained by the shift between the spectral region where scattering is important and the region where the spectral radiative heat source is large.  相似文献   

11.
基于分形理论,用计算机模拟了由球形基本粒子构成的煤烟聚集粒子。利用离散偶极子近似方法(Discrete Dipole Approximation)研究了煤烟聚集粒子的散射特性,讨论了分形煤烟聚集粒子的散射强度随煤烟聚集粒子的分形结构、大小、相对折射率及入射波波长变化情况。  相似文献   

12.
Laser-induced incandescence (LII) is a versatile technique for quantitative soot measurements in flames and exhausts. When used for particle sizing, the time-resolved signals are analysed as these will show a decay rate dependent on the soot particle size. Such an analysis has traditionally been based on the assumption of isolated primary particles. However, soot particles in flames and exhausts are usually aggregated, which implies loss of surface area, less heat conduction and hence errors in estimated particle sizes. In this work we present an experimental investigation aiming to quantify this effect. A soot generator, based on a propane diffusion flame, was used to produce a stable soot stream and the soot was characterised by transmission electron microscopy (TEM), a scanning mobility particle sizer (SMPS) and an aerosol particle mass analyzer coupled in series after a differential mobility analyzer (DMA-APM). Despite nearly identical primary particle size distributions for three selected operating conditions, LII measurements resulted in signal decays with significant differences in decay rate. However, the three cases were found to have quite different levels of aggregation as shown both in TEM images and mobility size distributions, and the results agree qualitatively with the expected effect of diminished heat conduction from aggregated particles resulting in longer LII signal decays. In an attempt to explain the differences quantitatively, the LII signal dependence on aggregation was modelled using a heat and mass transfer model for LII given the primary particle and aggregate size distribution data as input. Quantitative agreement was not reached and reasons for this discrepancy are discussed.  相似文献   

13.
Absorption and scattering of laser-induced incandescence (LII) intensities by soot particles present between the measurement volume and the detector were numerically investigated at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh-Debye-Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The effects of absorption and scattering on LII intensities are found to be significant under the conditions of this study, especially at the shorter detection wavelength and when the soot volume fraction is higher. Such a wavelength-dependent signal-trapping effect leads to a lower soot particle temperature estimated from the ratio of uncorrected LII intensities at the two detection wavelengths. The corresponding soot volume fraction derived from the absolute LII intensity technique is overestimated. The Beer-Lambert relationship can be used to describe radiation attenuation in absorbing and scattering media with good accuracy provided the effective extinction coefficient is adequately.  相似文献   

14.
An advanced fixed sectional aerosol dynamics model describing the evolution of soot particles under simultaneous nucleation, coagulation, surface growth and oxidation processes is successfully implemented to model soot formation in a two-dimensional laminar axisymmetric coflow methane/air diffusion flame. This fixed sectional model takes into account soot aggregate formation and is able to provide soot aggregate and primary particle size distributions. Soot nucleation, surface growth and oxidation steps are based on the model of Fairweather et al. Soot equations are solved simultaneously to ensure convergence. The numerically calculated flame temperature, species concentrations and soot volume fraction are in good agreement with the experimental data in the literature. The structures of soot aggregates are determined by the nucleation, coagulation, surface growth and oxidation processes. The result of the soot aggregate size distribution function shows that the aggregate number density is dominated by small aggregates while the aggregate mass density is generally dominated by aggregates of intermediate size. Parallel computation with the domain decomposition method is employed to speed up the calculation. Three different domain decomposition schemes are discussed and compared. Using 12 processors, a speed-up of almost 10 is achieved which makes it feasible to model soot formation in laminar coflow diffusion flames with detailed chemistry and detailed aerosol dynamics.  相似文献   

15.
“The laser-induced incandescence (LII) signal is proportional to soot volume fraction” is an often used statement in scientific papers, and it has – within experimental uncertainties – been validated in comparisons with other diagnostic techniques in several investigations. In 1984 it was shown theoretically in a paper by Melton that there is a deviation from this statement in that the presence of larger particles leads to some overestimation of soot volume fractions. In the present paper we present a detailed theoretical investigation of how the soot particle size influences the relationship between LII signal and soot volume fraction for different experimental conditions. Several parameters have been varied; detection wavelength, time and delay of detection gate, ambient gas temperature and pressure, laser fluence, level of aggregation and spatial profile. Based on these results we are able, firstly, to understand how experimental conditions should be chosen in order to minimize the errors introduced when assuming a linear dependence between the signal and volume fraction and secondly, to obtain knowledge on how to use this information to obtain more accurate soot volume fraction data if the particle size is known. PACS 42.62.-b; 44.40.+a; 61.46.Df; 78.70.-g; 65.80.+n  相似文献   

16.
The requirement for heavy duty diesel engines to reduce the level of NOx emissions has resulted in higher soot loading of engine lubricants due to fuel injection retardation and exhaust gas re‐circulation. An improved understanding of the process of soot aggregation and aggregate morphology is therefore required to provide an insight into the consequences of soot‐laden lubricants. These include the effects of dispersant architecture and soot loading rate on aggregate morphology. A 2D and 3D study using a semi‐quantitative random walk based simulation model into the evolution of simulated fractal‐like colloidal aggregates has been carried out and applied to address these issues. The effects of variable soot loading rates, which are engine dependent, are reported. The role of different interaction forces which are, among other things, engine temperature and lubricant formulation dependent is explored. Differences between the simulations run under the same conditions but in different dimensions are highlighted and their implications discussed. The data indicate that a correlation can be established between inter‐particle forces (represented via a sticking probability) and both aggregate morphology (represented by fractal dimension) and aggregate dispersancy and the degree of dispersion of those aggregates (measured by the mean empty space parameter). Significantly, a strong relationship was found between soot‐loading rate and aggregate morphology, with higher loading rates leading to both a much lower fractal dimension and a higher degree of aggregate dispersion, which in turn would lead to a higher lubricant viscosity.  相似文献   

17.
The refractive index of soot is an essential parameter for its optical diagnostics. It is necessary for quantitative interpretation of LII (Laser Induced Incandescence) signals, light scattering or extinction measurements as well as for emissivity calculations. The most cited values have been determined by intrusive methods or without taking into account the soot size distribution and its specific morphology. In the present study, soot generated by the combustion of diesel and diesel/rapeseed methyl ester (RME) mixture (70% diesel and 30% RME) are extensively characterized by taking into account the morphology, the aggregate size distribution, the mass fraction and the spectral dispersion of light. The refractive index m for wavelengths λ between 300 and 1000 nm is determined for diesel and diester fuels by both in-situ and ex-situ methods. The ex-situ method is based on the interpretation of extinction spectra by taking into account soot sizes and fractal morphology with the RDG-FA (Rayleigh–Debye–Gans for Fractal Aggregate) theory. The in-situ approach is based on the comparison of the LII signals obtained with two different excitation wavelengths. The absorption function E(m) and the scattering function F(m) are examined. This study reveals similar optical properties of soot particles generated by both studied fuels even at ambient and flame temperatures. The function E(m) is shown to reach a maximum for λ=250 nm and to tend toward a plateau-like behavior close to E(m)=0.3 for higher wavelength (600<λ (nm)<1000). The function F(m) is found to be quite constant for 400<λ (nm)<1000 and equal to 0.31.  相似文献   

18.
Macroscopic fractal aggregates of cobalt are obtained by thermal evaporation of cobalt metal in an argon atmosphere and subsequent deposition on a silicon substrate heated to 1000 K. It is established that the fractal structure is formed by diffusion-limited aggregation of cobalt particles. The macroscopic fractal cobalt aggregates are ferromagnetic. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 8, 556–558 (25 October 1997)  相似文献   

19.
A new combination of soot diagnostics employing two-angle elastic light scattering and laser-induced incandescence is described that is capable of producing non-intrusive, instantaneous, and simultaneous, in situ measurements of soot volume fraction, primary particle size, and aggregate radius of gyration within flames. Controlled tests of the new apparatus on a well-characterized laminar flame show good agreement with existing measurements in the literature. From a detailed and comprehensive Monte Carlo uncertainty analysis of the results, it was found that the uncertainty in all three measured parameters is dominated by knowledge of soot properties and aggregation behavior. The soot volume fraction uncertainty is dominated by uncertainty in the soot refractive index light absorption function; the primary particle diameter uncertainty is dominated by uncertainty in the fractal prefactor; while the uncertainty in the aggregate radius of gyration is dominated by the uncertainty in the width of the distribution of aggregate sizes.  相似文献   

20.
Soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame is modeled with a PAH-based soot model and an advanced sectional aerosol dynamics model. The mass range of solid soot phase is divided into 35 discrete sections and two variables are solved for in each section. The coagulation kernel of soot aggregates is calculated for the entire Knudsen number regime. Radiation from gaseous species and soot are calculated by a discrete-ordinate method with a statistical narrow-band correlated-k based band model. The discretized sectional soot equations are solved simultaneously to ensure convergence. Parallel computation with the domain decomposition method is used to save computational time. The flame temperature, soot volume fraction, primary particle size and number density are well reproduced. The number of primary particles per aggregate is overpredicted. This discrepancy is presumably associated with the unitary coagulation efficiency assumption in the current sectional model. Along the maximum soot volume fraction pathline, the number-based and mass-based aggregate size distribution functions are found to evolve from unimodal to bimodal and finally to unimodal again. The different shapes of these two aggregate size distribution functions indicate that the total number and mass of aggregates are dominated by aggregates of different sizes. The PAH-soot condensation efficiency γ is found to have a small effect on soot formation when γ is larger than 0.5. However, the soot level and primary particle number density are significantly overpredicted if the PAH-soot condensation process is neglected. Generally, larger γ predicts lower soot level and primary particle number density. Further study on soot aggregate coagulation efficiency should be pursued and more experimental data on soot aggregate structure and size distribution are needed for improving the current sectional soot model and for better understanding the complex soot aggregation phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号