首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependences of the absorptivity of a nanocomposite layer (a dielectric matrix with spherical metal inclusions) on the frequency, the volume fraction, the size of inclusions, the thickness of the layer, and the angle of incidence of the wave on it are studied. It is shown that the particular features of optical characteristics are related with the plasmon resonance in nanoparticles and the resonant-frequency dependence of the dielectric permittivity of the composite medium. The values of film parameters and frequency intervals in which the incident radiation is absorbed almost completely are found.  相似文献   

2.
For the miniaturization of optical devices, surface plasmon polaritons (SPPs) have been widely utilized due to their outstanding confinement and field‐enhancement characteristics. Analyzing a spectrum of optical signals and splitting certain regions of the spectrum range within a submicrometer‐scale structure are demanded for optical integrated systems. In this paper, a novel type of dichroic surface plasmon launcher that can switch the launching direction according to incident polarization states is demonstrated. Compared to the previously reported plasmonic dichroic splitters, the proposed schemes do not use any asymmetric geometry for directional launching. Hence, the direction of guided SPPs can be interchanged according to the polarization state. Such characteristics will be helpful to design switchable plasmonic devices that can be applied to active plasmonic integrated circuits.  相似文献   

3.
王培培  杨超杰  李洁  唐鹏  林峰  朱星 《物理学报》2013,62(16):167302-167302
金属薄膜上制备的表面等离激元颜色滤波器具有很强的颜色可调性. 在200 nm厚的金膜上, 通过聚焦离子束刻蚀, 制备一系列周期逐渐变化的圆形、方形、矩形亚波长尺寸小孔方阵列表面等离激元颜色滤波器, 改变入射光的偏振方向, 观察其超透射滤波现象. 研究发现: 对于矩形小孔阵列, 其透射光颜色随入射光偏振方向的变化而改变; 而对于圆形、方形的小孔阵列, 其透射光颜色对入射光的偏振方向并不敏感. 分析表明, 对于金膜上刻蚀的小孔结构, 虽然结构的周期性导致的表面等离激元极化子会对透射光的颜色变化产生一定影响, 但是随小孔形状变化的局域表面等离激元共振才是影响透射光颜色的决定性因素. 如果入射光没有在小孔中激发出局域表面等离激元, 则表面等离激元极化子对透射光的影响也会消失. 根据不同形状小孔周期结构透射光颜色随入射光的偏振变化特点, 制备出了包含两种小孔形状的复合周期结构. 随着入射光偏振方向的改变, 该结构会显示出不同的颜色图案. 关键词: 表面等离激元极化子 局域表面等离激元 颜色滤波器 亚波长小孔阵列  相似文献   

4.
Abstract We demonstrate that the rectangular nanohole arrays perforated in a 100 nm gold film can be used to tune the polarization direction of the transmitted light with maximum rotation angle of about 30 degrees. Theoretical analysis with the three-dimensional finite-difference time-domain simulations indicates that this phenomenon is attributed to the excitation of the surface plasmon wave on the gold film surface and the resonance of localized surface plasmon in the hole. With multiple plasmon resonances, the plasmonic waveplate can realize multi-wavelength polarization modulation. Our results may be useful to understanding the physical mechanism of enhanced plasmon mediated transmission and potential applications in plasmonic optical components.  相似文献   

5.
The 3D shape of Ag nanoparticles in glass irradiated by fs laser pulses is investigated by optical spectroscopy. It is shown that in general spheroids are produced with their symmetry axis oriented along the direction of the linear laser polarization. Depending on the actual irradiation conditions, oblate or prolate spheroids are obtained. The halo of small Ag clusters and Ag ions around the reshaped particles causes a redshift of the surface plasmon resonances via refractive index increase.  相似文献   

6.
Conditions for a change in the polarization selectivity of dips in the plasmon absorption spectra of fractal silver nanocomposites irradiated by pulsed laser radiation are studied. The energy thresholds of the polarization selectivity are evaluated, and the polarization and spectral threshold characteristics are compared. Mechanisms behind the correlation between the fractal structure of the nanocomposites, on the one hand, and their optical and photochromic properties, on the other hand, are discussed.  相似文献   

7.
Strong polarization dependence is observed in the optical transmission through nanohole arrays in metals. It is shown that the degree of polarization is determined by the ellipticity and orientation of the holes; the polarization axis lies perpendicular to the broad edge of the ellipse. Furthermore, the depolarization ratio shows a squared dependence on the aspect ratio of the holes, which is discussed in terms of coupling into and out of the surface plasmon modes. The observed results will be useful for tailoring the polarization behavior of metallic nanophotonic elements in many applications, including surface plasmon enhanced optical sensing and ultrafast optical switching.  相似文献   

8.
刘英超  陈海良  李曙光  刘强  李建设 《中国物理 B》2017,26(10):104211-104211
Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by finite element method(FEM). The gold film was selectively coated on the inner wall of one cladding air hole which was located near the fiber core along the y-axis direction. When the phase of core fundamental mode and surface plasmon polaritons(SPPs) mode matches,the two modes couple with each other intensely. Numerical results show that the resonance wavelength and strength vary with fiber structural parameters and the index of the infilling liquid. The fiber parameters were optimized to achieve specific functions. Under the optimal structure, we realized a dual channel filter at the communication wavelength of 1.31 μm and1.55 μm for y polarization direction and x polarization direction. Then a single channel polarized filter at the communication wavelength of 1.55 μm is also achieved by adjusting the refractive index of the infilling liquid. The proposed polarization filters realized dual channel filtering and single channel filtering simultaneously under the same structure for the first time to the best of our knowledge.  相似文献   

9.
The propagation of time-harmonic plane elastic waves in infinite elastic composite materials consisting of linear elastic matrix and rigid penny-shaped inclusions is investigated in this paper. The inclusions are allowed to translate and rotate in the matrix. First, the three-dimensional (3D) wave scattering problem by a single inclusion is reduced to a system of boundary integral equations for the stress jumps across the inclusion surfaces. A boundary element method (BEM) is developed for solving the boundary integral equations numerically. Far-field scattering amplitudes and complex wavenumbers are computed by using the stress jumps. Then the solution of the single scattering problem is applied to estimate the effective dynamic parameters of the composite materials containing randomly distributed inclusions of dilute concentration. Numerical results for the attenuation coefficient and the effective velocity of longitudinal and transverse waves in infinite elastic composites containing parallel and randomly oriented rigid penny-shaped inclusions of equal size and equal mass are presented and discussed. The effects of the wave frequency, the inclusion mass, the inclusion density, and the inclusion orientation or the direction of the wave incidence on the attenuation coefficient and the effective wave velocities are analysed. The results presented in this paper are compared with the available analytical results in the low-frequency range.  相似文献   

10.
The super resolution near-field structure which incorporates a AgOx thin film was studied through the calculation using three-dimensional (3D) finite-difference time-domain method. The influences of the optical field distribution generate by some factors, e.g., the polarization direction, the wavelength of incident light and the size of silver nano-particles, which are sensitive to the surface plasmon resonance are discussed in detail. The goal of this study is to explain the physical mechanisms responsible for the super-resolution near-field structure phenomena in 3D model and give a better understanding of the optical properties between AgOx layer and incident light.  相似文献   

11.
We report a near-field study of the excitation and propagation of surface plasmon on ordered Ag elliptical hole arrays with a scattering-type scanning near-field optical microscope. Strong dipole-like local plasmon is identified at each individual hole from near-field optical intensity and phase images. The excitation of the local plasmon at the elliptical hole is found to follow polarization excitation constraint. The coherent superposition of these local plasmon waves to form an extended surface plasmon wave propagating to an adjacent hole array is observed directly. The near-field results are consistent with the results obtained from far-field extraordinary transmission measurements. PACS 42.25.Bs; 42.25.Hz; 42.25.Ja; 42.25.Kb; 07.79.Fc  相似文献   

12.
In this paper, the near field distribution patterns formed from nanostripe corral and half spiral are investigated. Various near field distribution patterns are generated owning to the interference of propagating surface plasmon waves that emerged from the nanoslits or nanostripe. The half spiral nanoslits are illuminated with Stokes polarizations. Each polarization state shows a different field pattern at different locations on the surface of metal film. This is due to the excitation of surface plasmon waves at different parts of the nanostructures when illuminated with different types of polarization states. The same Stokes polarization states are also illuminated on a nanostripe corral structure. In this case, dipolar field distributions are observed when illuminated with different linear polarization states, while optical vortices are observed for circular polarization. It is believed that these interesting field patterns due to different arrangements of nanostructures could be used for near field imaging and polarization sensing.  相似文献   

13.
李山  钟明亮  张礼杰  熊祖洪  张中月 《物理学报》2011,60(8):87806-087806
空心方形纳米结构能够激发更大面积的增强电场,故其可以作为衬底用于表面增强拉曼散射.应用离散偶极子近似算法研究了空心方形银纳米结构的消光光谱及其近场电场分布与入射光偏振方向之间的关系.研究表明,空心方形银纳米结构的表面等离子体共振峰不随入射光偏振方向的改变而移动,但是其表面增强电场分布却强烈地依赖于入射光的偏振方向.另外,还讨论了空心方形银纳米结构间的耦合作用对其表面等离子体共振模式的影响.结果发现,可以通过调节结构间的距离来改变结构间的耦合作用,同时改变了表面等离子体共振峰的位置.这些结果将为理解闭合纳米 关键词: 空心方形银纳米结构 表面等离子体 偏振 电场耦合  相似文献   

14.
用耦合波理论分析了亚微米光栅对光波场的衍射作用,给出了在TE和TM偏振入射条件下矩阵形式的耦合波方程,研究了光栅在TE偏振入射条件下可见光波段内的反射和透射零级衍射特性。亚微米光栅零级衍射效率是波长、偏振和入射角的函数,在不同照明、观察和光栅参数条件下,光栅零级衍射具有非常复杂的光谱结构,经过适当的优化光栅参数,零级衍射具有许多独特的衍射特性,在许多应用领域具有广泛的应用前景。  相似文献   

15.
The change of the scattering properties of sodium, gold and silver spherical particles with size is discussed in the context of surface multipolar plasmon resonances. The presented surface plasmon size characteristics are abstracted from the quantity which is observed and deliver multipolar plasmon resonance frequencies and plasmon damping rates in the form of a continuous function of particle radius. The performed analysis of the plasmon dispersion relation is analogous to the problem of surface plasmon localized at a semi-infinite, flat metal/dielectric interface.Correlation between the multipolar plasmon resonance parameters, and the spectroscopic optical properties of conductive nanoparticles appearing as peaks in the measurable light intensities is analyzed. We discuss the fact, that such peaks arise from interference of all the electromagnetic fields contributing to the measured intensity, and not solely to the fields due to surface plasmon multipolar modes.We describe the results of light scattering experiment in orthogonal polarization geometries with use of spontaneously growing sodium droplets. The polarization geometry of the experiment allows for distinct separation of resonant contribution of dipole and quadrupole plasmon TM mode contributions to the measured intensities as a function of size.Predictions concerning size characteristics for dipole and quadrupole plasmons are compared with the results of light scattering experiments using spherical sodium droplets (our results) and gold and silver particles in suspension [other authors: Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J. Plasmon resonances in large noble-metal clusters. New J Phys 2002; 4:93.1–8; Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 2007; 79:4215–21; Njoki PN, Lim I-IS, Mott D, Park H-Y, Khan B, Mishra S, et al. Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 2007; 111:14664–9; Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002; 116:6755–9].  相似文献   

16.
Main patterns of structure formation of composite liquid crystal (LC) media and their classification according to the percentage content of liquid crystal and polymer are considered. Their properties are compared with the properties of homogeneous LC layers and the opportunities of their practical use in optical modulators are discussed. It is shown that, at small (10 wt %) monomer concentrations in the composite, its polymerization leads to formation of a thin-wall network which separates the liquid crystal into domains and provides an uniform orientation in the bulk. The polymer network increases the elasticity of the layer and decreases the relaxation time, but the devices usually work in polarized light and use the same principle as the devices filled with pure LC; i.e. the phase of the light or its polarization changes due to a change in the effective refraction index. However, the division of the LC volume into relatively autonomous domains also allows one to create a polarization-independent device based on the scattering effect. By increasing the relative content of the monomer, it is possible to ensure formation of a porous polymer matrix with inclusions of isolated from each other LC droplets. Such polymer-dispersed LC in its initial state either scatter the light of any polarization and becomes transparent state when an electric field is applied, or, with the use of special methods, the switch-off and switch-on states are swapped (“reverse mode” devices). The main advantages of the composite media are independence of polarization, mechanical strength, and small relaxation times, while the main disadvantages are increased power consumption, high polarization-independent optical losses, and significantly lower contrast. Possible ways to increase the contrast are described.  相似文献   

17.
利用T-matrix方法对太赫兹波段亚波长半导体球形阵列进行了数值模拟并在数值模拟结果的基础上讨论了其光学特性。在太赫兹波段可以通过掺杂等手段调节半导体的表面等离子体特性。以半导体InSb为例并采用Drude模型,对单个亚波长球及两个或多个亚波长球组成的阵列进行了数值模拟,主要以归一化消光截面为参数,讨论了不同阵元半径、不同球形单元间距、不同单元数目及入射波不同极化方向对阵列特性的影响。  相似文献   

18.
A method for the determination of the island film structure parameters by measuring fluctuations of optical characteristics of small areas of the film is proposed and implemented. The extinction fluctuations of the laser beam are measured experimentally in a focal spot, in which the polarization of radiation is modulated in time and which is movable over the film. From the optical data thus obtained, the optical absorption anisotropy of the nanometer-size islands of the film is evaluated. It is shown that this characteristic has a considerable frequency dispersion in the region of plasmon resonances of the nanoparticles.  相似文献   

19.
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm^2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.  相似文献   

20.
由于偏振特性是材料自身所决定的物理特性,其偏振图像含有丰富的目标信息,利用偏振信息对目标进行识别一直是国内外目标探测领域的研究热点,而主动偏振成像较之被动偏振成像更具有信噪比高以及可控性好等优势。在详细分析了偏振菲涅尔反射比分布的理论基础上,提出了一种利用探测物体表面的偏振菲涅尔反射比的主动偏振成像方法。该方法在发射端将偏振方向正交的两种偏振态的光源交替照射到目标场景中,在探测端用分别装有两个偏振方向垂直的偏振片的CCD采集偏振图像。同时,将探测端架构在不同的探测方向采集目标经主动光源照射后的偏振数据,最后将这些数据传输到计算中心,通过最优化拟合技术反演出不同目标的光学常数,由于不同目标的表面材质不同,其反映出的光学常数就不同,从而达到辨识不同材质目标的目的。实验分别采用了仿真数据和实测数据来验证该方法的有效性。仿真实验显示,所提出的方法利用材料的光学常数对不同材料进行区分不仅是科学的而且更方便有效。实测数据进一步验证了该方法能够较好的恢复出目标的相关光学常数,尤其在区分金属和非金属材料方面表现突出,并且探测方法结构简单实用,在目标探测、伪装识别等领域中有较大应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号