首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
热致性液晶共聚酯的拉伸流动行为   总被引:2,自引:0,他引:2  
采用入口收缩流动的实验方法研究了改性PET/ 80PHB液晶共聚酯LCP80的拉伸流动行为 ,考察了拉伸速率、温度等对其拉伸粘度、Trouton比的影响 .实验结果表明 ,LCP80的入口压降值很大 ,其中由拉伸引起的入口压降是主要的 .在该文实验条件下LCP80均表现出拉伸稀化现象 ,并且Trouton比值都远大于 3 .根据流动中液晶织态结构的变化解释了实验现象 ,并对入口收缩流动的实验数据处理方法作了改进 ,比Beery的方法更为合理 ,也具有更广的适用性 .  相似文献   

3.
Gelation in dilute aqueous L-cysteine solutions containing various electrolytes is studied by rotational viscometry in different dynamic regimes. It is revealed that gels are formed at rather low concentrations of cysteine of no higher than 0.1 vol %. In the linear range of mechanical actions, gels of all examined compositions behave as elastic solid-like media; their elastic moduli, which lie in a range of 10–100 Pa, are independent of frequency and their mechanical losses are low. However, these gels exhibit dualistic properties and can flow at low shear stresses with a Newtonian viscosity on the order of 103–105 Pa s. On reaching a critical stress (yield point), gels are destroyed, their viscosity decreases by six to seven decimal orders of magnitude, and they are transformed into low-viscosity liquids. At rest, the initial structure and properties are recovered. Mechanisms of percolation network formation are proposed.  相似文献   

4.
The impact of fluid elasticity on the dynamic wetting of polymer solutions is important because many polymer solutions in technological use exhibit non-Newtonian behaviors in the high shear environment of the wedge-like flow near a moving contact line. Our former study [G.K. Seevaratnam, Y. Suo, E. Ramé, L.M. Walker, Phys. Fluids 19 (2007) Art. No. 012103] showed that shear thinning induced by a semi-flexible high molecular weight polymer reduces the viscous bending near a moving contact line as compared to a Newtonian fluid having the same zero-shear viscosity. This results in a dramatic reduction of the dependence of the effective dynamic contact angle on contact line speed. In this paper, we discuss dynamic wetting of Boger fluids which exhibit elasticity-dominated rheology with minimal shear thinning. These fluids are prepared by dissolving a dilute concentration of high molecular weight polymer in a "solvent" of the oligomer of the polymer. We demonstrate that elasticity in these fluids increases curvature near the contact line but that the enhancement arises mostly from the weakly non-Newtonian behavior already present in the oligomeric solvent. We present evidence of instabilities on the liquid/vapor interface near the moving contact line.  相似文献   

5.

In this study, the effect of temperature and mass fraction of Al2O3 and WO3 nanoparticles dispersed in deionized water and liquid paraffin was investigated on dynamic viscosity of nanofluid. The results of the TEM tests showed that the size of Al2O3 and WO3 nanoparticles was ranged from 10 to 60 nm, and the results showed that nanoparticles were semi-spherical. Also the results of DLS and zeta potential tests, respectively, exhibited the uniform size and high stability of the nanoparticles in the basefluid environment. The findings showed that adding a certain amount of nanoparticles to water and liquid paraffin increases dynamic viscosity, and in the case of various shear rates, the viscosity is constant for the water-based nanofluids, which indicates the Newtonian behavior of the nanofluid. In addition, for those prepared by liquid paraffin as a basefluid, the viscosity does not remain constant at different shear rates and at low amount of shear rate the viscosity achieves higher value, indicating non-Newtonian behavior of liquid paraffin-based nanofluids. The results showed that by increasing the temperature in liquid paraffin-based nanofluid the uniformity and linearity of the viscosity curve at various shear rates could be observed, which represents an approach for Newtonian behavior of nanofluid at higher temperatures. These results also showed that with increasing the mass fraction of nanoparticles in water and liquid paraffin, the viscosity increases at different shear rates. Finally, the correlation presented in this study shows that for nanofluid viscosity as a function of nanoparticles load and temperature, the deviation of correlated data from experimental values is less than 10%.

  相似文献   

6.
Waxy oil gelation and rheology is investigated and modeled using strain-dependent viscosity correlations. Rotational rheometry shows a sharp viscosity increase upon gel formation. High creeping flow viscosities are observed at small deformation conditions prior to yielding. A new strain-dependent rheological model, following analogous formulation to the Carreau–Yasuda shear rate-dependent model, captures viscosity reduction associated with yielding. In addition, shear viscosity and extensional viscosity are investigated using a capillary rheometry method. Distinct shear-thinning behavior is observed in the shear mode of deformation, while distinct tension-thinning behavior is observed in the extensional mode of deformation for the model fluid systems. High Trouton ratios are obtained for the gelled model fluid systems, confirming strongly non-Newtonian fluid rheology. Finally, axial pressure wave profiles are computed at real pipeline dimensions for idealized moderate yield stress fluids using a computationally efficient 1D pipeline simulator. The Rønningsen time-dependent gel degradation model is used to emulate the fluid rheology in the simulator. Axial stress localization phenomena are shown to depend on the overall magnitude of gel degradation as established by the reduction in yield value. A high degree of gel degradation serves to afford flow commencement in a timely manner.  相似文献   

7.
A water-soluble acrylamide-modified terpolymer (PAAP) with sodium 2-acrylamido-2-methylpropane sulfonate and vinyl biphenyl as the hydrophobic monomer was synthesized to obtain a polymeric thickening agent applied in middle- and low-permeability oil reservoirs. The polymer is expected to possess a low molecular weight and high solution viscosity. The steady-state consecutive shear cycles of PAAP in aqueous and brine solutions were measured, and the viscoelastic properties of PAAP solutions were investigated as a function of polymer, NaCl and sodium dodecylbenzene sulfonate (SDBS) concentrations. The aqueous PAAP solutions exhibits pseudoplastic and thixotropic behavior over the range of shear rate and shear thickening behavior at very low shear rate. The steady-state shear results show that some disrupted associating aggregates at high shear rate can be reformed during the shear reversion process and the suitable shear rate is favorable to the formation of hydrophobically associative structures in the brine solutions. Above 0.05 g⋅dL−1 PAAP, aqueous PAAP solutions have predominantly elastic character over the range of angular frequency that is strengthened with increasing polymer concentration. The PAAP brine solutions exhibit predominantly elastic behavior only above 3 rad⋅s−1 and a salt-thickening effect. By addition of an optimum amount of SDBS (0.5–0.8 mmol⋅L−1), the complex viscosities become much higher than the dynamic viscosities, although the loss tangent values increase owing to the formation of loose associative structures.  相似文献   

8.
Non-Newtonian flow behaviour of gellan gum aqueous solutions   总被引:3,自引:0,他引:3  
Rheological properties of gellan gum solutions with and without salt have been monitored using oscillatory measurements and steady-shear viscosity measurements. The steady-shear viscosity measurements indicated that gellan gum solutions showed a wide Newtonian plateau when gellan gum molecules took a coil conformation, and that the shear-thinning behaviour became more conspicuous with conformational change of gellan gum molecules from coiled to helical, and the range of the Newtonian plateau became limited only to very low shear rates. When gellan gum solutions showed rheological behaviour as a dilute or concentrated polymer solution, these systems obeyed the Cox–Merz superposition of steady-state viscosity and dynamic viscosity. As gellan gum solutions formed a weak gel, the Cox–Merz rule was not valid; however, the deviation from this superposition was less significant than that of xanthan gum solutions which also show weak-gel behaviour. Received: 8 December 1998 Accepted in revised form: 5 March 1999  相似文献   

9.
The viscous behavior of oil-in-water (O/W) emulsions is studied over a broad range of dispersed-phase concentrations (φ) using a controlled-stress rheometer. At low-to-moderate values of φ (φ<0.60), emulsions exhibit Newtonian behavior. The droplet size does not exert any influence on the viscosity of Newtonian emulsions. However, at higher values of φ, emulsions exhibit shear-thinning behavior. The viscosity of shear-thinning emulsions is strongly influenced by the droplet size; a significant increase in the viscosity occurs when the droplet size is reduced. With the decrease in droplet size, the degree of shear thinning in concentrated emulsions is also enhanced. The viscosity data of Newtonian emulsions are described reasonably well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)), which takes into account the effects of the dispersed-phase concentration as well as the viscosity ratio of the dispersed phase to continuous phase. The relative viscosities of non-Newtonian emulsions having different droplet sizes but the same dispersed-phase concentration are scaled with the particle Reynolds number. The high shear viscosities of non-Newtonian emulsions can be predicted fairly well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)). Copyright 2000 Academic Press.  相似文献   

10.
In this article, we discuss the dynamics of a single drop immersed in an immiscible liquid, under an imposed shear flow. The two situations of a viscoelastic matrix with a Newtonian drop and of a viscoelastic drop in a Newtonian matrix are considered, both systems being characterized by a viscosity ratio equal to one, and by the same elasticity parameter. Experimental data are taken with a rheo-optical computer-assisted shearing device, allowing for drop observation from the vorticity direction of the shear flow. Data favourably compare with predictions of the recently proposed Maffettone-Greco model, where the drop is described as a deforming ellipsoid.  相似文献   

11.
The phase equilibrium and rheological properties of poly(1-trimethylsilyl-1-propyne) solutions obtained with tantalum catalysts are studied. For three polymers with different molecular masses, phase diagrams are determined in a number of solvents. From these diagrams, the Hansen solubility parameters of poly(1-trimethylsilyl-1-propyne) are calculated by the method proposed in this work. Dilute solutions of poly(1-trimethylsilyl-1-propyne) behave as Newtonian liquids, whereas the viscosity of viscoelastic concentrated systems decreases as the shear rate grows. The molecular and rheological characteristics of studied poly(1-trimethylsilyl-1-propyne) samples are compared with the samples prepared with NbCl5 catalysts. Poly(1-trimethylsilyl-1-propyne) obtained with a catalytic system involving tantalum pentachloride is characterized by high intrinsic viscosity and solution viscosity compared to poly(1-trimethylsilyl-1-propyne) prepared with niobium catalyst. The difference in properties is due to the dissimilar ratios of cis and trans units in the samples.  相似文献   

12.
The influence of water on cellulose dissolved in 1-ethyl-3-methylimidazolium acetate (EMIMAc) is analysed by measuring steady state viscosity of dilute solutions. The goal is to determine: (a) the maximal water content allowing keeping cellulose dissolved (in dilute regime) and (b) the influence of water on solution flow and cellulose hydrodynamic properties. Mixing EMIMAc and water is exothermal and EMIMAc-water viscosity does not obey a logarithmic mixing rule suggesting strong interactions between the components. Newtonian flow of cellulose-EMIMAc-water solutions was recorded at water concentrations below 15 wt% and a shear thinning was observed for higher water content. It was suggested that above 15 wt% water cellulose is not completely dissolved: swollen aggregates form a sort of a “suspension” which is structuring under shear. Cellulose intrinsic viscosity showed a peak at 10 wt% water-90 wt% EMIMAc. It was hypothesised that the addition of water leads to the formation of large cellulose aggregates due to the preferential cellulose–cellulose interactions.  相似文献   

13.
The entropy of vaporization at a liquid’s boiling point is well approximated by Trouton’s rule and even more accurately by Hildebrand’s rule. A cell method is used here to calculate the entropy of vaporization for a range of liquids by subtracting the entropy of the gas from that of the liquid. The liquid’s entropy is calculated from the force magnitudes measured in a molecular dynamics simulation based on the harmonic approximation. The change in rotational entropy is not accounted for except in the case of liquid water. The predicted entropies of vaporization agree well with experiment and Trouton’s and Hildebrand’s rules for most liquids and for water except other liquids with hydrogen bonds. This supports the idea that molecular rotation is close to ideal at a liquid’s boiling point if hydrogen bonds are absent; if they are present, then the rotational entropy gain must be included. The method provides a molecular interpretation of those rules by providing an equation in terms of a molecule’s free volume in a liquid which depends on the force magnitudes. Free volumes at each liquid’s boiling point are calculated to be ~1 Å3 for liquids lacking hydrogen bonds, lower at ~0.3 Å3 for those with hydrogen bonds, and they decrease weakly with increasing molecular size.  相似文献   

14.
研究了无鳞鱼———泥鳅的体表黏液流变行为,发现黏液的稳态流动存在着3个不同区域:第一区域内,黏度随剪切速率(γ)变化不显著,呈现牛顿流动行为;第二区域内,随γ增大,黏度下降,呈现非牛顿行为;第三区域内,随γ继续增大,黏度又基本保持不变.黏液表观黏度(ηa)与γ的关系可用Carreau模型很好地拟合,其增比黏度(ηsp)与浓度(c)的关系为ηsp∝c1.5,表明黏液处于亚浓缠结区域.在测试频率(ω)范围内,黏液的动态储能模量(G′)大于动态损耗模量(G″),表明与黏性相比较,弹性占优,且G′及G″随ω变化不显著.存在一临界温度(35℃),当低于35℃时,黏液黏度随温度变化不显著,当高于35℃时,黏液变性,表现出不同的流变行为.  相似文献   

15.
Good jetting performance and pigment‐dispersing stability are necessary for pigment‐based ink‐jet inks. This study investigates how the chemical structures of the polymeric dispersants affect the pigment‐dispersing stability and jetting performance of ink‐jet inks. A series of polymeric dispersants containing styrene (hydrophobic unit) and acrylic acid (hydrophilic unit) with different ratios have been synthesized and used to disperse different pigments. Because 3000–12,000 ink drops can be expelled from the nozzle of a thermal bubble‐type ink‐jet printer within 1 s, the jetting behavior is related to the rheology variation of a dilute solution under a high shear. An in situ drop formation system has been used to study the high‐shear‐rate rheology (dynamic surface tension and dynamic viscosity) of a solution with a viscosity lower than 3 cps, which no commercial rheometer can measure. Excellent ink‐jet inks can only be produced by the combination of pigments, dispersants, and surfactants with appropriate hydrophilicity. Moreover, the correlation of the pigment surface properties, the chemical structures of the polymeric dispersants, and ink formulation is discussed. The effects of the surfactants and firing conditions on the jetting behavior of the ink‐jet ink are also examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1909–1920, 2003  相似文献   

16.
Aqueous polysaccharide blends, formed from 2.5% (w/v) solution of hydroxypropyl guar gum (HPG) and 2.5% (w/v) solution of carboxymethyl cellulose (CMC) according to different blending ratios, were investigated at 20 °C in terms of their shear-dependent viscosity and thixotropic properties. The Cross viscosity equation was found to fit the shear-dependent viscosity data with reasonable accuracy. When the HPG solution with the mass fraction (f HPG) of 0.87 was mixed, the zero shear viscosity (η o) of the corresponding blend was found to be 168.5753 Pa s, while the η o values of component HPG and CMC solutions were found to be 3.3859 and 98.6525 Pa s, respectively. For the aqueous HPG/CMC blends investigated, the resulting zero shear viscosity was observed to be much greater than the combined zero shear viscosity of the component polysaccharide solutions, showing a synergistic viscosity property. The quantitative determination of the hysteresis loop area, developed during viscometer tests on shear rate–shear stress reverse paths, was used to describe the thixotropic behavior. When compared with aqueous solutions of the component polysaccharides, these polysaccharide blends could afford enhanced thixotropic property. Maximum thixotropy synergism was observed for the HPG/CMC blend with the f HPG of 0.67.  相似文献   

17.
《印度化学会志》2021,98(11):100205
Due to the increasing trend to use ionic liquids (ILs) for number of applications, it is of utmost importance to ensure non toxicity of the solvent systems which may contaminate the processed products. The reported toxicity of several imidazolium based ionic liquids posed a need to develop bio based ILs for various applications which are due to their bio-origin are bio compatible, nontoxic and biodegradable. Herein eleven bio-based ionic liquids were prepared using acid moieties available in various plants and characterized. Although some of the ILs were used to separate antibodies such as IgG from rat serum in the form of aqueous biphasic systems but to find their direct application for material preparation and food applications, herein rheological behavior of the ILs were investigated. The choline based IL containing coumarine-3-carboxylate was found to have highest zero shear viscosity while the IL with D-(−)-quinate was found to have the lowest. The viscoelastic behavior of the ionic liquids established anion dependent viscous and liquid like behavior of the ionic liquids. Interestingly the ILs showed viscosity independent ion conductivity. Due to the high conductivity, stable physical state and bio-origin such ILs have the potential for applications in electrochemistry, food and material science.  相似文献   

18.
The breakup of Newtonian droplets in a Newtonian matrix during shear flow is investigated in a counterrotating parallel plate device. For bulk conditions, the critical capillary number for breakup is known to be only determined by the viscosity ratio. Here, we show that the critical capillary number is also affected by the degree of confinement: for low viscosity ratios, confinement suppresses breakup, whereas for high viscosity ratios, confinement promotes breakup. This way, above a critical value for the degree of confinement, even droplets with a viscosity ratio larger than 4, which are unbreakable by shear in a bulk situation, can be broken in a simple shear flow field.  相似文献   

19.
Rheological properties of isotropic solutions and gel structures of lysozyme–sodium dodecyl sulfate mixtures in water are investigated. Isotropic solutions behave as Newtonian fluids with very low viscosity values. For the lysozyme solutions the intrinsic viscosity and the Huggins coefficient were calculated on the basis of the Mooney equation. Above a certain yield stress value, the viscosity of the gel samples decreases continuously in the whole range of the shear rate. Dynamic rheological experiments show weak gel behavior where the storage modulus and the loss modulus are almost parallel and are frequency-dependent. A belated gel stage with very slow kinetics has been characterized. There is a substantial enhancement of the gel strength by ageing since the belated gel stage manifests a higher yield stress value and a higher storage modulus than the initial gel stage. The gels are stable in the temperature range between 10 and 32 °C.  相似文献   

20.
Droplet impact has been studied for over a hundred years dating back to the pioneering work of Worthington [1]. In fact, much of his ingenuity contributed to modern day high speed photography. Over the past 40 years significant contributions in theoretical, numerical, and experimental work have been made. Droplet impact is a problem of fundamental importance due to the wealth of applications involved, namely, spray coating, spray painting, delivery of agricultural chemicals, spray cooling, inkjet printing, soil erosion due to rain drop impact, and turbine wear. Here we highlight one specific application, spray coating. Although most studies have focused their efforts on low viscosity Newtonian fluids, many industrial applications such as spray coating utilize more viscous and complex rheology liquids. Determining dominant effects and quantifying their behavior for colloidal suspensions and polymer solutions remains a challenge and thus has eluded much effort. In the last decade, it has been shown that introducing polymers to Newtonian solutions inhibits the rebounding of a drop upon impact, Bergeron et al. [2]. Furthermore Bartolo et al. [3] concluded that the normal stress component of the elongational viscosity was responsible for the rebounding inhibition of polymer based non-Newtonian solutions. We aim to uncover the drop impact dynamics of highly viscous Newtonian and complex rheology liquids used in pharmaceutical coating processes. The generation and impact of drops of mm and μm size drops of coating liquids and glycerol/water mixtures on tablet surfaces are systematically studied over a range of We ∼ O(1-300), Oh ∼ O(10− 2-1), and Re ∼ O(1-700). We extend the range of Oh to values above 1, which are not available to previous studies of droplet impacts. Outcomes reveal that splashing and rebounding are completely inhibited and the role of wettability is negligible in the early stages of impact. The maximum spreading diameter of the drop is compared with three models demonstrating reasonable agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号