首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phase transitions caused by the redistribution of quasiparticle occupation numbers n(p) in homogeneous Fermi systems with particle repulsion are analyzed. The phase diagram of a strongly correlated Fermi system, when drawn in the coordinates “density ρ-dimensionless coupling constant η,” resembles a Washington pie for a rather broad class of interactions. Its upper part is “filled” with Fermi condensate, and the bottom part is filled with normal Fermi liquid. Both parts are separated by a narrow interlayer of Lifshitz phase with a multiply connected Fermi surface.  相似文献   

2.
A quantum phase transition in strongly correlated Fermi systems beyond the topological quantum critical point has been studied using the Fermi liquid approach. The transition takes place between topologically equivalent states with three Fermi surface sheets, but one of them is characterized by a quasiparticle halo in the quasiparticle momentum distribution n(p), and the other one is characterized by a hole pocket. It has been found that the transition between these states is a first-order phase transition for the interaction constant g and temperature T. The phase diagram in the vicinity of this transition has been constructed.  相似文献   

3.
A quasiparticle pattern advanced in Landau’s first article on Fermi-liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi-Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.  相似文献   

4.
刘夏姬  胡辉  李师群 《物理》2007,36(6):430-433
文章首先简要评述了目前强相互作用的极化冷费米原子体系的研究现状.在三维,人们对该体系基态存在着不同认识.为对这个问题有进一步了解,文章探讨了一维强相互作用极化费米气体.在均匀情况下,这是一个可积系统,可以得到该体系的一个严格相图.作者发现了一种非均匀的超流相在相空间占主导地位.在有外加束缚势的实验情况下,通过局域密度泛函近似,作者发现了两种新颖的相分离相.  相似文献   

5.
We report a new cross-sectional area of the ReO3 Fermi surface above the compressibility collapse transition. Magnetic breakdown at low fields destroys the gaps at the new Brillouin zone faces of the high-pressure phase so that the observed Fermi surface is essentially identical in both phases at the fields where it can be observed.  相似文献   

6.
We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation in two dimensions. To demonstrate these effects, we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime, there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP, the topology of the hole Fermi surface is changed. We also demonstrate that in this regime, the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.  相似文献   

7.
We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical hopping t{ perpendicular}{c2}. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like "arcs" in photoemission experiments.  相似文献   

8.
We give a Hamiltonian-based interpretation of microscopic Fermi liquid theory within a renormalization group framework. The Fermi liquid fixed-point Hamiltonian with its leading-order corrections is identified and we show that the mean field calculations for this model correspond to the Landau phenomenological approach. This is illustrated first of all for the Kondo and Anderson models of magnetic impurities which display Fermi liquid behaviour at low temperatures. We then show how these results can be deduced by a reorganization of perturbation theory, in close parallel to that for the renormalized φ4 field theory. The Fermi liquid results follow from the two lowest order diagrams of the renormalized perturbation expansion. The calculations for the impurity models are simpler than for the general case because the self-energy depends on frequency only. We show, however, that a similar renormalized expansion can be derived also for the case of a translationally invariant system. The parameters specifying the Fermi liquid fixed-point Hamiltonian are related to the renormalized vertices appearing in the perturbation theory. The collective zero sound modes appear in the quasiparticle-quasihole ladder sum of the renormalized perturbation expansion. The renormalized perturbation expansion can in principle be used beyond the Fermi liquid regime to higher temperatures. This approach should be particularly useful for heavy fermions and other strongly correlated electron systems, where the renormalization of the single-particle excitations are particularly large.

We briefly look at the breakdown of Fermi liquid theory from a renormalized perturbation theory point of view. We show how a modified version of the approach can be used in some situations, such as the spinless Luttinger model, where Fermi liquid theory is not applicable. Other examples of systems where the Fermi liquid theory breaks down are also briefly discussed.  相似文献   

9.
Electronic structure, especially the Fermi surface, is calculated for the intermetallic rare-earth compound LaAg, known to show the structural phase transition when In is substituted for Ag, by a self-consistent fully-relativistic APW method with the exchange-correlation potential in a local-density approximation. The Fermi surface is found to consist of large hole and electron sheets as well as small hole and electron sheets. This result confirms well the theoretical prediction by Niksch et al. (1987). These Fermi surface sheets are found to explain the experimental results for the de Haas-van Alphen effect by Niksch et al. (1987) and Motoki et al. (1995) reasonably well. But, the frequency branches originating from the large hole sheet have been observed only partially. Local curvature of the large hole sheet is investigated as a possible origin of the disappearance of these frequency branches.  相似文献   

10.
We study the expansion of an atomic Fermi gas interacting attractively with a Bose-Einstein condensate. We observe a slower evolution of the radial-to-axial aspect ratio which reveals the importance of the mutual attraction between the two samples during the first phase of the expansion. For large atom numbers, we also observe a bimodal momentum distribution of the Fermi gas, which reflects the spatial distribution of the mixture in trap. This effect allows us to extract important information on the overlap of the two species across the collapse.  相似文献   

11.
Properties of the distribution of single-particle levels adjacent to the Fermi surface in finite Fermi systems are studied, focusing on the case in which these levels are degenerate. The interaction of the quasiparticles occupying these levels lifts the degeneracy and affects the distance between the closest levels on opposite sides of the Fermi surface, as the number of particles in the system is varied. In addition to the familiar scenario of level crossing, a new phenomenon is uncovered, in which the merging of single-particle levels results in the disappearance of well-defined single-particle excitations. Implications of this finding are discussed for nuclear, solid-state, and atomic systems. The text was submitted by the authors in English.  相似文献   

12.
We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where both the mass and population of each component are unequal. We show that the tricritical point at zero temperature evolves smoothly from the BEC to BCS side of the resonance as a function of mass ratio r. We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase separation, while the breached pair state with one Fermi surface for the excess fermions exhibits differences in its density of states and pair correlation functions depending on which side of the resonance it lies. Finally, we show that, when r greater, similar 3.95, the finite-temperature phase diagram of trapped gases at unitarity becomes topologically distinct from the equal mass system.  相似文献   

13.
A relativistic extension of the Landau Fermi liquid theory, applicable to the study of high density matter, is developed. Consequences of Lorentz invariance in the theory are explored. The formalism is illustrated by a study of relativistic Fermi systems weakly interacting via scalar and vector meson exchange. Second order exchange energies for both massless scalar and massless vector interactions are calculated in terms of Landau parameters on the Fermi surface. Zero sound and “color-plasma oscillations” are studied in quark matter with SU(3) color gluon coupling.  相似文献   

14.
The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Néel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non‐Fermi liquid behavior, non‐s‐wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents.  相似文献   

15.
16.
A functional relation between the kinetic-energy density and the total density is used to analyze the surface properties of semi-infinite Fermi systems. We find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy.  相似文献   

17.
The recently derived nonlocal quantum kinetic equation for dense interacting Fermi systems combines time derivatives with finite time stepping known from the logistic mapping. This continuous delay differential equation is a consequence of the microscopic delay time representing the dynamics of the deterministic chaotic system. The responsible delay time is explicitly calculated and discussed for short-range correlations. As a novel feature oscillations in the time evolution of the distribution function itself appear and bifurcations up to chaotic behavior occur. The temperature and density conditions are presented where such oscillations and bifurcations arise indicating an onset of phase transition.  相似文献   

18.
A rapidly developing field, experimental physics of ultracold gases of Fermi atoms, is briefly reviewed. The contribution of this field to fundamental physics is shown along with connection to other fields which explore systems of Fermi particles. The basic parameters of atomic Fermi gas are described together with its unique properties and advantages and disadvantages in comparison to other Fermi systems. The prospects of this field and its short history are considered. Research groups working in this field are listed.  相似文献   

19.
We investigate a Fermi surface effect on the ideal Lorenz ratio of an anisotropic Fermi liquid caused by the onset of Umklapp scatterings. After discussing simple models by way of illustration, we present numerical results for transition metals, and indicate a material with a simple Fermi surface like sodium cobaltite as a possible candidate to observe the effect.  相似文献   

20.
A calculation is described for the anisotropic relaxation time due to impurity scattering on the Fermi surface of aluminum. The Bloch states and the Fermi surface are obtained from Ashcroft's 4-OPW model, while the scattering potentials are obtained from locally re-screened form factors. Numerical results reveal that strong anisotropicsin the electronic lifetime arise for s-like impurities such as Si and Ge. A phase shift model is introduced to explain these anisotropies. The predicted anisotropies appear to be in reasonable agreement with experimental values for the Dingle temperature. The relaxation time for d.c. conductivity is obtained from iterative solution of the Boltzmann equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号