首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six secondary amine palladacycles bearing monodentate ligands (1a, 2a), 1,2-bis(diphenylphosphino)ethane (dppe) and 1,3-bis(diphenylphosphino)propane (dppp) containing bridging and bidentate ligands (1b, 2bd), and four C,C-type phosphorus ylide complexes containing thiourea (tu) (3a), phenyl isothiocyanate (4a), and bridging and terminal azide groups (5 and 5a) have been synthesized. Resulting complexes have been characterized by elemental analyses, IR, 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy with single crystal X-ray structure determination of 1a and 2a. The Pd in 1a and 2a occupies the center of a slightly distorted square planar environment formed by Caryl, Namine, Npyridine, and Cl. The catalytic efficiency of complexes showed that in most cases, amine palladacycles display better catalytic activities than the phosphorus ylide Pd(II) complexes. Comparison between bidentate and bridging dppe complexes showed that dppe-bridged dimer 2d has higher catalytic activity than dppe bidentate complex.  相似文献   

2.
Abstract  The solvothermal reactions of copper(I) tert-butylthiolate (CuS t Bu) with 1/3 equiv. of dppe [dppe = bis(diphenylphosphino)ethane] or bix [bix = 1,4-bis(imidalzole-1-ylmethyl)benzene] in CH3CN led to the formation of two cluster-based coordination polymers [(CuS t Bu)4(dppe)] n (1) and [(CuS t Bu)6(bix)] n (2). Single-crystal X-ray diffraction studies reveal that 1 and 2 feature 1D zigzag polymeric chains which contain rare (CuS t Bu)4 or (CuS t Bu)6 clusters as connecting junctions and dppe or bix as linkers. The title compounds show optical transitions with band gaps of ∼3.18 eV for 1 and ∼2.81 eV for 2. Compounds 1 and 2 exhibit strong photoluminescence with the peaks maximum at 603 and 629 nm respectively. Graphical Abstract  Two 1D zigzag polymers [(CuS t Bu)4(dppe)] n (1) and [(CuS t Bu)6(bix)] n (2) [dppe = bis(diphenylphosphino) ethane] or bix [bix = 1,4-bis(imidalzole-1-ylmethyl)benzene] have been synthesized by solvothermal reactions using copper(I) tert-butylthiolate CuS t Bu as the starting material. Compounds 1 and 2 contain rare (CuS t Bu)4 and (CuS t Bu)6 clusters as connecting nodes and dppe or bix as bridging ligands. The title compounds show optical transitions with band gaps of ∼3.18 eV for 1 and ∼2.81 eV for 2. Both 1 and 2 exhibit strong photoluminescence with the peak maximums at 603 and 629 nm, respectively. The 1D zigzag polymer of [(CuS t Bu)6(bix)] n (2).  相似文献   

3.
The reaction between 2,3-dichloromaleic acid dialkylester (alkyl=CH3 and C2H5) and diphenyl(trimethylsilyl)phosphine, leading to diphenylphosphine substituted esters of maleic and fumaric acid has been studied. With a molar ratio 1:1 of the components 2-chloro-3-diphenylphosphinomaleic acid dimethylester (3) and-diethylester are obtained as colourless crystalline compounds. From a 1:2 reaction however only bis(diphenylphosphino)fumaric acid dimethylester (colourless crystals) and-diethylester (yellow) can be crystallized, the latter in a partially oxydized form. The presence of bis(diphenylphosphino)maleic acid diester in the oily part of the reaction products has been proved by its chelating with Ni2+ and Pd2+ to complexes of the compositionMeCl2·(PP). Pure bis(diphenylphosphino)maleic acid dimethylester (4) could be synthesized by alcoholysis and following methylation of bis (diphenylphosphino)maleic anhydrid. Contrary to this easily chelating and air stable compound the corresponding fumaric acid diesters give no complexes with the metals examined as far and are very sensitive towards oxygen. This sensitivity decreases strongly after oxydation to 2-diphenylphosphino-3-diphenylphosphorylfumaric acid diester, the diethylester of which could be crystallized in pure form.Characteristic vibration bands, uv/vis-absorption and31P-nmr peaks are discussed.The result of X-ray diffraction data of3 and4 are reported and conformation, bond lengthes and bond angles of these molecules are given.  相似文献   

4.
Three new Mn(II) bis(pendant arm)-macrocyclic Schiff base complexes, [MnLn]2+(n = 1, 2, 3), have been prepared via cyclocondensation of 2,6-diacetylpyridine with three different branched hexadentate amines (3,6-bis(2-pyridylmethyl)-3,6-diazaoctane-1,8-diamine (1), 3,7-bis(2-pyridylmethyl)-3,7-diazanonane-1,9-diamine (2) and 3,8-bis(2-pyridylmethyl)-3,8-diazadecane-1,10-diamine (3)) in the presence of MnCl2 in methanol. The ligands, L, are 15-, 16- and 17-membered pentaaza macrocycles having two 2-pyridylmethyl pendant arms [L1; 2,13-dimethyl-6,9-bis(2-pyridylmethyl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18), 2, 12, 14, 16-pentaene, L2; 2,14-dimethyl-6,10- bis(2-pyridylmethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19), 2, 13, 15, 17-pentaene and L3; 2,15-dimethyl-6,11-bis(2-pyridylmethyl)-3,6,11,14,20-pentaazabicyclo[14.3.1]eicosa-1(20),2,14,16,18-pentaene]. All the complexes have been characterized by physicochemical and spectroscopic methods. The crystal structure of [MnL1](ClO4)2·CH3CN has been determined and indicates that in the solid state, the complex adopts a slightly distorted pentagonal bipyramidal geometry with the Mn(II) centre located within a pentaaza macrocycle with two 2-pyridylmethyl pendants coordinating in the axial positions.  相似文献   

5.
Reaction of the dinuclear complex [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl]2 (1) with ligands (L = 4-picoline, sym-collidine) gave the six-membered palladacycles [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (2). The complex 1 reacted with AgX (X = CF3SO3, BF4) and bidentate ligands [L–L = phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), bipy(2,2′-bipyridine) and dppp (bis(diphenylphosphino)propane)] giving the mononuclear orthopalladated complexes [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(L–L)] (3) [L–L = phen, dppe, bipy and dppp]. These compounds were characterized by physico-chemical methods, and the structure of [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (L = sym-collidine) was determined by single-crystal X-ray analysis.  相似文献   

6.
Two carboxamide ligands, H2bqbenzo {3,4-bis(2-quinolinecarboxamido)benzophenone} and H2bqb {N,N′-bis[(2-quinolinecarboxamide)-1,2-benzene]}, have been prepared using tetrabutylammonium bromide as an environmentally benign reaction medium. Two new Pd(II) complexes, [PdII(bqbenzo)] (1) and [PdII(bqb)] (2), have been synthesized, characterized, and their structures determined by single crystal X-ray diffraction. The di-anionic ligands, bqbenzo2? and bqb2?, are coordinated via two Namide atoms and the nitrogens of the two quinoline rings, with Pd?Namide < Pd–Nquinoline bond lengths. The geometry around palladium(II) in both complexes is distorted square planar. The electrochemical behaviors of the ligands and their Pd(II) complexes have been investigated by cyclic voltammetry in DMF. An irreversible PdII/I reduction is observed at ?1.06 V for 1 and at ?1.177 V for 2, indicating the influence of the R substituent on the central phenyl ring of carboxamide ligands on the PdII/I reduction potential. The ligands and palladium complexes were also screened for in vitro antibacterial activity. The Pd(II) complexes show strong biological activity against S.typhi and E.coli as Gram ?ve and B.cereus and S.aureus as Gram +ve bacteria comparable to the antibiotic penicillin. The antibacterial results also reveal that coordination of Pd(II) significantly improves the activity.  相似文献   

7.
New mononuclear 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(1) with bis(diphenylphosphine) ligands were synthesized: (DBSQ)Cu(dppe) (1) (DBSQ=3,6-di-tert-butyl-o-benzosemiquinone and dppe=1,2-bis(diphenylphosphino)ethane), (DBSQ)Cu(dppp) (2) (dppp=1,3-bis(diphenylphosphino)propane), (DBSQ)Cu(dppn) (3) (dppn=2,2′-bis(diphenylphosphino)-1,1′-binaphthyl), and (DBSQ)Cu(dppfc) (4) (dppfc=1,1′-bis(diphenylphosphino)ferrocene). The compositions and structures of complexes1–4 were characterized by elemental analysis and electronic absorption, IR, and ESR spectroscopy. The molecular structures of complexes3 and4 were established by X-ray diffraction analysis. The reactions of elimination and replacement of neutral ligands in the coordination sphere of the complexes were studied by ESR spectroscopy. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2333–2340, November, 1998.  相似文献   

8.
Abstract

The reaction of 1,2-bis(diphenylphosphino)ethane with substituted o-benzo-quinones afforded new bis(6-hydroxycyclohexa-2,4-dienone) derivatives. Treatment of the same reagent with o-naphthoquinone, phenanthrenequinone, and acenaphthenequinone gave the respective bis(diphenylphosphoryl)ethylidenes or diacenaphthylenone derivatives. On the other hand, p-quinones react with 1,2-bis(diphenylphosphino)methane to yield the corresponding 4-hydroxycyclohexa-2,5-dien-1-ones. Possible reaction mechanisms are considered and the structural assignments are based on compatible analytical and spectroscopic data.  相似文献   

9.
New bis(oxamato)palladate(II) complexes, [Pd(H2O)4][Pd(2,6-Me2pma)2]·2H2O (1), (n-Bu4N)2[Pd(2,6-Me2pma)2]·2H2O (2a), and (n-Bu4N)2[Pd(2,6-Me2pma)2]·2CHCl3 (2b) (2,6-Me2pma = N-2,6-dimethylphenyoxamate and n-Bu4N+ = tetra-n-butylammonium), have been synthesized and the structures of 1 and 2b characterized by single-crystal X-ray diffraction. Complex 1 is a double salt constituted by tetraaquapalladium(II) cations and bis(oxamato)palladate(II) anions interlinked by hydrogen bonds. The palladium(II) ions in 1 are four-coordinate with two oxygens and two nitrogens from two fully deprotonated oxamate ligands (anion), and four water molecules (cation) building centrosymmetric square-planar surroundings. Centrosymmetric bis(oxamato)palladate(II) anions occur in 2b as in 1, the charge balance in this compound being ensured by the bulky n-Bu4N+. The catalytic role of 1 and 2a for the Suzuki reaction has been investigated by using a series of aryl iodide/bromide derivatives in the conventional organic medium dimethylformamide. The tetraaquapalladium(II) unit in 1 appears to be active in the catalytic Suzuki cross-coupling reactions, but it readily decomposes to inactive palladium black.  相似文献   

10.
The following organic and organic–inorganic hybrid compounds were prepared as photo-luminescent materials following efficient and practical synthetic methods: 1,3-bis[4-(n-alkoxy)phenyl]-2-propen-1-one (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10); 3,5-bis[4-(n-alkoxy)phenyl]-1H-pyrazole (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10) (in case of n = 7, a mixture of 3,5-bis(4-heptyloxyphenyl)-1H-pyrazole and 3,5-bis(4-heptyloxyphenyl)-4H-pyrazole was detected) and bis(3,5-bis [4-(n-alkoxy) phenyl]-1H-pyrazole) silver(I) nitrate (where, n-alkoxy: O(CH2)nH, n = 6,7,8,9 or 10). The prepared compounds have been characterised and their structures were elucidated depending upon (FTIR, UV-Vis, 1HNMR, 13CNMR, 2D 1H-1H-COSY, 2D 1H-13C-HSQC and mass spectra) in addition to molar conductivity measurements for silver(I) complexes. The mesomorphism behaviour of the prepared compounds was studied using polarised light optical microscopy and confirmed with differential scanning calorimetry and X-ray powder diffraction techniques. The studies showed that among all of these compounds only the pyrazole derivatives are liquid crystal materials. The luminescent properties of all the prepared compounds were also investigated which confirmed that all of these compounds are photo-luminescent in the crystalline solid state and in the mesophase.  相似文献   

11.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

12.
Abstract

A series of mono- and dinuclear complexes of Ni(II) and Co(II) with two hexadentate ligands α,α′-bis(bis(2-(diphenylphosphino)ethyl)amino)ethane(BDPE) and α,α′-bis(bis(2-(diphenylphosphino)ethyl)-amino)-m-xylene (BDPX) were synthesized and chracterized by means of elemental analyses, molar conductance, magnetic susceptibilities, infrared, electronic and 31P NMR data. The molecular structure of a mononuclear Ni(II) complex, [Ni(BDPE)](CIO4)2.CH2Cl2, was established by single-crystal X-ray diffraction methods. Crystal data: C59H62NiCl4N2O8P4, M = 1250.98, orthorhombic, space group Pbca, V= 11834.3(7) Å3, Z= 8, a= 10.817(1), b = 31.683(7), c=34.538(1) Å, final R 0.055 (R w = 0.057) for 3118 observed reflections. The Ni(II) ion exists in a slightly distorted square planar geometry, the coordination sites being two phosphorous and two tertiary nitrogen atoms of the ligand. Electrochemical studies of the complexes were also carried out.  相似文献   

13.
Nine Hg(II) complexes, [Hg(DiphtS)2(L-L)](27) {where, HDiphtS = 4,5-diphenyl-1,2,4-triazole-3-thiol; L-L = bis(diphenylphosphino)ethane (dppe) (2); 1,3-bis(diphenylphosphino)propane (dppp)(3); 1,4-bis(diphenylphosphino)butane (dppb)(4); 1,1′-bis(diphenylphosphino)ferrocene (dppf)(5); 2,2′-bipyridine (Bipy)(6) and 1,10-phenanthroline (Phen)(7) } or [Hg(DiphtS)2(L)2] (89) {where L = triphenylphosphine (Ph3P) (8) and triphenylphosphine sulphide (Ph3PS) (9)}, have been prepared form the reaction of [Hg(DiphtS)2](1) with phosphine or amine as co-ligands. Then characterized by the IR, NMR (1H and 31P) spectroscopy, elemental analysis, molar conductivity. The results supported the monodentate behaviour of HDiphtS ligand in all complexes (19) in anion form through the sulfur atom. Complexes 1, 2 and 6 have been used as single source precursors for the preparation of ethylene-diamine capped HgS-nanoparticles. Powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM), have been used to characterize the HgS nanoparticles.  相似文献   

14.
A simple method for preparation of nickel-fullerene coordination complexes has been developed. NiLCl2(Br2) and C60 mixtures are reduced by zinc dust upon heating in o-dichlorobenzene. Diffusion of hexane into the reaction mixture results in formation of crystals of NiL(η2-C60)?solvent (L = 1,2-bis(diphenylphosphino)ethane (dppe, 1), 1,3-bis(diphenylphosphino)propane (dppp, 2) and 1,1′-bis(diphenylphosphino)ferrocene (dppf, 3)). Nickel coordinates to the 6–6 bonds of C60 by η2- type and has distorted square-planar geometry. The average Ni–C(C60) bond lengths are 1.936(6)–1.977(3)?Å. We found that increase in the P(L)–Ni–P(L) angle and the dihedral angle between the PNiP and CNiC planes results in elongation of the Ni–C(C60) and Ni–P(L) bonds by 0.04–0.06?Å. Complexes 1–3 contain zero-valent nickel since fullerenes are neutral according to the IR- and visible-NIR spectra. Some of the IR-active bands of C60 are split into three bands in spectra of 1–3 due to C60 symmetry lowering, and the F1u(4) C60 mode is shifted to lower wave numbers due to the π-back donation. The formation of 1–3 is accompanied by appearance of new bands in the visible range at 435–447 and 661–680 nm.  相似文献   

15.
This paper reviews various coordination/ organometallic polymers in which the metal atoms are incorporated in the backbone using diphosphine and diisocyanide ligands. Such ligands includes diphosphines of the type bis(diphenylphosphino)alkane where alkane is (CH2)m with m = 1, 3-6, bis(diphenylphosphino)acetylene (dpa), and bis(dimethylphosphino)methane (dmpm), and diisocyanides such as 1,8-diiso-cyano-p-menthane (dmb) and p-diisocyanotetra-methylbenzene (ditmb). The metal fragments are monocations such as Cu+, Ag+, and Au+, dinuclear species such as Pd2(dmb)22+, Pd2(dppm)22+, M2(dmpm)32+ (M = Cu, Ag), and clusters such as M4(dmb)42+ (M = Pd, Pt).  相似文献   

16.
Abstract

The water-soluble bisphosphines, 1,2-bis(bis(hydroxymethyl)phosphino)benzene (“HMPB”) (1) and 1,2-bis(bis(hydroxymethyl)phosphino)ethane (“HMPE”) (2) were synthesized in near quantitative yields by the catalytic hydroformylation of H2PC6H4PH2 and H2PCH2CH2PH2 in the presence of formaldehyde in aqueous media.1.2 The reactions of these chelating bisphosphines 1 and 2 with Pt(COD)Cl2 and Pd(PhCN)2Cl2 produced water-soluble Pt(II) and Pd(II) complexes M[(HOH2C)2PC6H4P(CH2OH)2]2Cl2 (M = Pt, 3; Pd, 4) and M[(HOH2C)2PCH2CH2P(CH2OH)2]2Cl2 (M = Pt, 5; Pd, 6) respectively. The reactions of 1 and 2 with Re(O2)I(Ph3)2 and Re(O)2(NHC5H5)4]Cl to produce new water-soluble Re(V) complexes are also described. All the new compounds were characterized by 1H and 31P NMR spectroscopy. X-ray structures of representative Pd(II) and Re(V) complexes as shown below confirmed the chemical constitution of this new generation of water-soluble metal complexes.  相似文献   

17.
Triazole‐based ligands, tris (triazolyl)methanol (Htbtm), bis (triazolyl)‐phenylmethanol (Hbtm), and phenyl (pyridin‐2‐yl)(triazolyl)methanol (Hpytm), with differences in ligand denticity (i.e., bidentate and tridentate) and type of N donors (i.e., triazole and pyridine) were functionalized onto a silica support to produce the corresponding SiO2‐ L ( L  = tbtm, btm, pytm). Subsequent reactions with Pd (CH3COO)2 in CH2Cl2 yielded Pd/SiO2‐ L . ICP‐MS reveals that Pd loadings are higher with increased N loadings, resulting in the following trend: Pd/SiO2‐tbtm (0.83 mmol Pd g?1) > Pd/SiO2‐btm (0.65 mmol Pd g?1) ~ Pd/SiO2‐pytm (0.63 mmol Pd g?1). Meanwhile, TEM images of the used Pd/SiO2‐ L catalysts after the first catalytic cycle show that the mean size of Pd NPs is highest with Pd/SiO2‐pytm (8.5 ± 1.5 nm), followed by Pd/SiO2‐tbtm (6.4 ± 1.6 nm) and Pd/SiO2‐btm (4.8 ± 1.3 nm). Based on TONs, catalytic studies toward aerobic oxidation of benzyl alcohol to benzaldehyde at 60 °C in EtOH showed that Pd/SiO2‐pytm possessed the most active surface Pd(0) atoms, most likely as a result of more labile properties of the pyridine–triazole ligand compared to tris‐ and bis (triazolyl) analogs. ICP‐MS and TEM analysis of Pd/SiO2‐btm indicate minimal Pd leaching and similar average Pd NPs sizes after 1st and 5th catalytic runs, respectively, confirming that SiO2‐btm is an efficient Pd NPs stabilizer. The Pd/SiO2‐btm catalyst was also active toward aerobic oxidation of various benzyl alcohol derivatives in EtOH and could be reused for at least 7 reaction cycles without a significant activity loss.  相似文献   

18.
Treatment of [(ClAu)2(diphosphine)] {diphosphine=bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)isopropane (dppip), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp)} with two equivalents of the anion [Fe2(μ-CO)(CO)6(μ-PPh2)] in the presence of TlBF4 gives the new heterometallic diclusters [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}2(diphosphine)] that have been isolated and characterized. Their 31P-NMR spectra show different patterns as a function of the diphosphine ligand. The electrochemical behavior of these compounds has been investigated and compared with that of the mono- [Fe2(μ-CO)(CO)6(μ-PPh2)(μ-AuPPh3)] and tricluster [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}3(triphos)] derivatives.  相似文献   

19.
Pd(OAc)2/1,1′-bis(diphenylphosphino)ferrocene as an efficient, highly active catalyst for the allylation of amines, alcohols and carboxylic acids with 1-phenyl-1-propyne has been developed. The effect of various reaction parameters, such as ligand, time, solvent, temperature, metal: ligand ratio and catalyst concentration on yields of the product were investigated. The optimized procedure works well under mild operating conditions and permits rapid generation of a library for various allylated products.  相似文献   

20.
Cyclopalladation of mono-, di- and tribenzylamine has been investigated by reacting the corresponding amines with an equimolar amount of palladium(II) acetate (reaction i), or by heating the corresponding bis-amine complexes [Pd(O2CMe)2{(PhCH2)nNH3−n}2] (n=1, 2) (reaction ii). By the reaction i, all the three amines undergo cyclopalladation. However, in the case of the reaction ii, only the dibenzylamine complex [Pd(O2CMe)2{(PhCH2)2NH}2] has been converted into a cyclopalladated complex. The reactivity of the three benzylamines towards cyclopalladation has been discussed in terms of the co-ordinating ability influenced by the bulkiness around the nitrogen atom. Temperature-dependent 1H-NMR spectra are observed for mononuclear cyclopalladated complexes [Pd(O2CMe){C6H4CH2N(CH2Ph)2C1N}L] (L=PPh3, AsPh3) and are attributed to the dissociation of the nitrogen atom in the cyclopalladated chelate ring. A heteroleptic bis-cyclopalladated complex [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] has also been prepared. X-ray crystallographic studies on [{Pd(O2CMe)[C6H4CH2N(CH2Ph)2C1N]}2] and [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] have been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号