首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations were used to determine the influence of a methane-water interface on the position and stability of methane hydrate cages. A potential of mean force was calculated as a function of the separation of a methane hydrate cage and a methane-water interface. The hydrate cages are found to be strongly repelled from the methane gas into the water phase. At low enough temperatures, however, the most favorable location for the hydrate cage is at the interface on the water side. Cage lifetime simulations were performed in bulk water and near a methane-water interface. The methane-water interface increases the cage lifetime by almost a factor of 2 compared to cage lifetimes of cages in bulk water. The potential of mean force and the cage lifetime results give additional explanations for the proposed nucleation of gas hydrates at gas-water interfaces.  相似文献   

2.
By performing a large scale of molecular dynamics simulations, we analyze 60 x 10(6) hydration shells of methane to examine whether the dodecahedral water cluster (DWC) can naturally form in methane aqueous solutions--a fundamental question relevant to the nucleation mechanisms of methane hydrate. The analyzing method is based on identifying the incomplete cages (ICs) from the hydration shells and quantifying their cagelike degrees (zetaC=0-1). Here, the zetaC is calculated according to the H-bond topological network of IC and reflects how the IC resembles the complete polyhedral cage. In this study, we obtain the zetaC distributions of ICs in methane solutions and find the occurrence probabilities of ICs reduce with zetaC very rapidly. The ICs with zetaC>or=0.65 are studied, which can be regarded as the acceptable cagelike structures in appearance. Both increasing the methane concentration and lowering the temperature can increase their occurrence probabilities through slowing down the water molecules. Their shapes, cage-maker numbers, and average radii are also discussed. About 13-14 of these ICs are face saturated, meaning that every edges are shared by two faces. The face-saturated ICs have the potential to act as precursors of hydrate nucleus because they can prevent the encaged methane from directly contacting other dissolved methane when an event of methane aggregation occurs. The complete cages, i.e., the ICs with zetaC=1, form only in the solutions with high methane concentration, and their occurrence probabilities are about 10(-6). Most of their shapes are different from the known hydrate cages, but we indeed observe a standard 5(12)6(2) hydrate cage. We do not find the expected DWC, and its occurrence probability is estimated to be far less than 10(-7). Additionally, the IC analysis proposed in this work is also very useful in other studies not only on the formation, dissociation, and structural transition of hydrates but also on the hydrophobic hydration of apolar solutes.  相似文献   

3.
We report the first UV-vis spectroscopic study of bromine molecules confined in clathrate hydrate cages. Bromine in its natural hydrate occupies 51262 and 51263 lattice cavities. Bromine also can be encapsulated into the larger 51264 cages of a type II hydrate formed mainly from tetrahydrofuran or dichloromethane and water. The visible spectra of the enclathrated halogen molecule retain the spectral envelope of the gas-phase spectra while shifting to the blue. In contrast, spectra of bromine in liquid water or amorphous ice are broadened and significantly more blue-shifted. The absorption bands shift by about 360 cm-1 for bromine in large 51264 cages of type II clathrate, by about 900 cm-1 for bromine in a combination of 51262 and 51263 cages of pure bromine hydrate, and by more than 1700 cm-1 for bromine in liquid water or amorphous ice. The dramatic shift and broadening in water and ice is due to the strong interaction of the water lone-pair orbitals with the halogen sigma* orbital. In the clathrate hydrates, the oxygen lone-pair orbitals are all involved in the hydrogen-bonded water lattice and are thus unavailable to interact with the halogen guest molecule. The blue shifts observed in the clathrate hydrate cages are related to the spatial constraints on the halogen excited states by the cage walls.  相似文献   

4.
Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.  相似文献   

5.
Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.  相似文献   

6.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2= 75%, xCO2= 50%, and xCO2= 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

7.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xco2 = 75%, xco2 = 50%, and zco2 = 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

8.
The self-assembly of enantiopure pyridyl-functionalized metallosalan units affords a homochiral helicate cage, [Zn(8)L(4)Cl(8)], in which the optical rotation of each ligand is increased by a factor of 10 upon coordination. The octanuclear cage featuring a chiral amphiphilic cavity exhibits enantioselective luminescence enhancement by amino acids in solution. The cage exists in two different crystalline polymorphic forms that possess porous structures built of helicate cages interconnected by 1D channels or pentahedral cages and have the ability to separate small racemic molecules by adsorption but with different enantioselectivities.  相似文献   

9.
High facial selectivity (>99%) of nucleophilic addition to the carbonyl groups of the title compounds (1 and 2) has been achieved for the novel trioxa cage 2, but not for the dioxa 1. Similar experimental observations were made for the carbene addition to the double bonds of cage compounds, 3 and 4. Calculations were carried out for the cage compounds and their reaction transition structures, with LiH as a nucleophile and :CCl(2) as an attacking carbene. The calculated facial preference for nucleophilic and carbene addition agreed well with experimental results. The origins of facial selectivity are examined from the viewpoints of structure, frontier orbitals, and molecular electrostatic potential of the reactants, as well as strain, electrostatic, and hyperconjugation effects in the transition state. For dioxa cages, the structural facial difference around the reaction center is minor, but the electronic difference of syn and anti faces generated by the two remote oxygen atoms is clearly demonstrated via frontier orbital and MEP analyses. For trioxa cages, the close proximity of the third ether oxygen (O(s)) to the reaction center brings large structural and electronic changes around the reaction center. The calculated electrostatic and strain energy differences of syn and anti transition structures are significantly larger for trioxa cages than for the dioxa cages. Therefore, they both contribute to the enhanced facial selectivity of trioxa compounds. Finally, analysis of hyperconjugative stabilization in transition structures reveals the danger of relying solely on Cieplak or Anh models in rationalization of facial selectivity, especially when nonequivalent steric and electrostatic effects as those present in the trioxa systems are involved.  相似文献   

10.
Nucleation of gas hydrates remains a poorly understood phenomenon, despite its importance as a critical step in understanding the performance and mode of action of low dosage hydrate inhibitors. We present here a detailed analysis of the structural and mechanistic processes by which gas hydrates nucleate in a molecular dynamics simulation of dissolved methane at a methane/water interface. It was found that hydrate initially nucleates into a phase consistent with none of the common bulk crystal structures, but containing structural units of all of them. The process of water cage formation has been found to correlate strongly with the collective arrangement of methane molecules.  相似文献   

11.
As rationally designable materials, the variety and number of synthesised metal–organic cages (MOCs) and organic cages (OCs) are expected to grow in the Cambridge Structural Database (CSD). In this regard, two of the most important questions are, which structures are already present in the CSD and how can they be identified? Here, we present a cage mining methodology based on topological data analysis and a combination of supervised and unsupervised learning that led to the derivation of – to the best of our knowledge – the first and only MOC dataset of 1839 structures and the largest experimental OC dataset of 7736 cages, as of March 2022. We illustrate the use of such datasets with a high-throughput screening of MOCs and OCs for xenon/krypton separation, important gases in multiple industries, including healthcare.

We mined the Cambridge Structural Database for porous cages using topological data analysis, which resulted in the first and only dataset of metal-organic cages and the largest dataset of organic cages.  相似文献   

12.
This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.  相似文献   

13.
To investigate the molecular interaction between guest species inside of the small and large cages of methane + propane mixed gas hydrates, thermal stabilities of the methyl radical (possibly induced in small cages) and the normal propyl and isopropyl radicals (induced in large cages) were investigated by means of electron spin resonance measurements. The increase of the total amount of the normal propyl and isopropyl radicals reveals that the methyl radical in the small cage withdraws one hydrogen atom from the propane molecule enclathrated in the adjacent large cage of the structure-II hydrate. A guest species in a hydrate cage has the ability to interact closely with the other one in the adjacent cages. The clathrate hydrate may be utilized as a possible nanoscale reaction field.  相似文献   

14.
Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H(2)-THF system in which there is single H(2) occupation of the small cage (labelled "1SC 1LC"), we find that no H(2) migration occurs, and this is also the case for pure H(2) hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H(2)-THF and pure-H(2) systems, in which there is double H(2) occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H(2) migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.  相似文献   

15.
Local ordering in co‐deposits of water and xenon atoms produced at low temperatures can be followed uniquely by 129Xe NMR spectroscopy. In water‐rich samples deposited at 10 K and observed at 77 K, xenon NMR results show that there is a wide distribution of arrangements of water molecules around xenon atoms. This starts to order into the definite coordination for the structure I, large and small cages, when samples are annealed at ~140 K, although the process is not complete until a temperature of 180 K is reached, as shown by powder Xray diffraction. There is evidence that Xe ? 20 H2O clusters are prominent in the early stages of crystallization. In xenon‐rich deposits at 77 K there is evidence of xenon atoms trapped in Xe ? 20 H2O clusters, which are similar to the small hydration shells or cages observed in hydrate structures, but not in the larger water clusters consisting of 24 or 28 water molecules. These observations are in agreement with results obtained on the formation of Xe hydrate on the surface of ice surfaces by using hyperpolarized Xe NMR spectroscopy. The results indicate that for the various different modes of hydrate formation, both from Xe reacting with amorphous water and with crystalline ice surfaces, versions of the small cage are important structures in the early stages of crystallization.  相似文献   

16.
A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.  相似文献   

17.
In the present study, we report the results of a systematic investigation of cage-like water structures using the first-principles calculations. These results show that, in the case of methane hydrate, the following nucleation mechanism can be revealed. The formation of small water cavities filled with methane is the first step of the formation of methane hydrate. It is not necessary to occupy all dodecahedral cages by guest molecules. After that small cavities start to form the H-bonding network with surrounding water molecules and a small number of water molecules is enough for the formation of a stable hydrogen-bonding network. The structural information contained in such nuclei is conserved in the forming crystal. Moreover, the presence of a methane molecule between small cages is also important to prevent the adhesion of cavities. It found that the ozone molecule can also stabilize the small cage since the value of the interaction energy between the ozone guest and the water host framework is very close to that obtained for the methane case. However, ozone affects the structure of large cavities and hence, the second guest is necessary to stabilize the hydrate structure.  相似文献   

18.
We present results from a molecular dynamics study of the dissociation behavior of carbon dioxide (CO(2)) hydrates. We explore the effects of hydrate occupancy and temperature on the rate of hydrate dissociation. We quantify the rate of dissociation by tracking CO(2) release into the liquid water phase as well as the velocity of the hydrate-liquid water interface. Our results show that the rate of dissociation is dependent on the fractional occupancy of each cage type and cannot be described simply in terms of overall hydrate occupancy. Specifically, we find that hydrates with similar overall occupancy differ in their dissociation behavior depending on whether the small or large cages are empty. In addition, individual cages behave differently depending on their surrounding environment. For the same overall occupancy, filled small and large cages dissociate faster in the presence of empty large cages than when empty small cages are present. Therefore, hydrate dissociation is a collective phenomenon that cannot be described by focusing solely on individual cage behavior.  相似文献   

19.
Using molecular dynamics simulations on the microsecond time scale, we investigate the nucleation and growth mechanisms of CO(2) hydrates in a water/CO(2)/silica three-phase system. Our simulation results indicate that the CO(2) hydrate nucleates near the three-phase contact line rather than at the two-phase interfaces and then grows along the contact line to form an amorphous crystal. In the nucleation stage, the hydroxylated silica surface can be understand as a stabilizer to prolong the lifetime of adsorbed hydrate cages that interact with the silica surface by hydrogen bonding, and the adsorbed cages behave as the nucleation sites for the formation of an amorphous CO(2) hydrate. After nucleation, the nucleus grows along the three-phase contact line and prefers to develop toward the CO(2) phase as a result of the hydrophilic nature of the modified solid surface and the easy availability of CO(2) molecules. During the growth process, the population of sI cages in the formed amorphous crystal is found to increase much faster than that of sII cages, being in agreement with the fact that only the sI hydrate can be formed in nature for CO(2) molecules.  相似文献   

20.
Recent theoretical prediction and experimental confirmation of cage configurations for Au clusters have stimulated considerable interest in finding novel gold clusters exhibiting high stability. We use a dual relationship between gold antifullerene cages with all triangular faces and carbon fullerenes with all degree 3 vertices to construct a large number of Au50 antifullerene cages by omnicapping and dualization procedures. Among these cages we find a new D6d cage as the lowest-energy configuration of Au50. The unusual stability of this new Au50 cage is associated with spherical aromaticity and sp-d hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号