首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MS n analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well.  相似文献   

2.
Herein, we describe an accurate method for protein quantification based on conventional acid hydrolysis and an isotope dilution-ultra performance liquid chromatography–tandem mass spectrometry method. The analyte protein, recombinant human erythropoietin (rhEPO), was effectively hydrolyzed by incubation with 8 mol/L hydrochloric acid at 130 °C for 48 h, in which at least 1 μmol/kg of rhEPO was treated to avoid possible degradation of released amino acids during hydrolysis. Prior to hydrolysis, sample solution was subjected to ultrafiltration to eliminate potential interfering substances. In a reversed-phase column, the analytes (phenylalanine, proline, and valine) were separated within 3 min using gradient elution comprising 20 % (v/v) acetonitrile and 10 mmol/L ammonium acetate, both containing 0.3 % (v/v) trifluoroacetic acid. The optimized hydrolysis and analytical conditions in our study were strictly validated in terms of accuracy and precision, and were suitable for the accurate quantification of rhEPO. Certified rhEPO was analyzed using a conventional biochemical assay kit as an additional working calibrant for the quantification of EPO and improved the accuracy. The optimized protocol is suitable for the accurate quantification of rhEPO and satisfactorily serves as a reference analytical procedure for the certification of rhEPO and similar proteins.
Figure
The concept of protein quantification by amino acid analysis via acid hydrolysis using isotopedilution LC-MS  相似文献   

3.
A sensitive and specific method for the quantitative determination of zearalenone (ZEN) and its major metabolites (α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) in animal plasma using liquid chromatography combined with heated electrospray ionization (h-ESI) tandem mass spectrometry (LC–MS/MS) and high-resolution Orbitrap® mass spectrometry ((U)HPLC–HR–MS) is presented. The sample preparation was straightforward, and consisted of a deproteinization step using acetonitrile. Chromatography was performed on a Hypersil Gold column (50 mm × 2.1 mm i.d., dp: 1.9 μm, run-time: 10 min) using 0.01% acetic acid in water (A) and acetonitrile (B) as mobile phases.  相似文献   

4.
A method using reversed phase liquid chromatography–electrospray ionization–tandem mass spectrometry was developed for the determination of 52 pesticides in tobacco. The influence of mobile phase additives was investigated to improve sensitivity and accuracy of the method and to reduce matrix effects. The tobacco extracts were purified via a Chem Elut partition cartridge by consecutive elution with pentane followed by dichloromethane. The two fractions were further purified by Florisil solid-phase extraction with acetone or diethyl ether elution. An additional dispersive solid-phase extraction step with primary–secondary amine led to decreased recoveries of several pesticides due to degradation or binding to the sorbent. The method was validated for the tobacco types Burley, Oriental and Virginia. The recovery rates of almost all pesticides ranged between 70 and 120%. The limits of quantification were below or near the 10 ng/g level. Few but significant differences between the tobacco types could be found regarding recovery and sensitivity.  相似文献   

5.
This study used reversed-phase liquid chromatography–tandem mass spectrometry and supercritical fluid chromatography–tandem mass spectrometry for determination of the stereoisomers of chlorfenvinphos and dimethylvinphos in tobacco. Tobacco samples were extracted and purified with a modified quick, easy, cheap, effective, rugged, and safe technique using spherical carbon. The performance of both methodologies was comprehensively compared in terms of methods validation parameters (separation efficiency, linearity, selectivity, recovery, repeatability, sensitivity, matrix effect, etc.). Under optimized conditions, the calibration curves of the stereoisomers of chlorfenvinphos and dimethylvinphos in the range of 10–500 ng/mL showed excellent linearity with R2 ≥ 0.997 in both methods. The adequate recoveries of analytes from three different spiked tobaccos were obtained using reversed-phase liquid chromatography–tandem mass spectrometry (86.1–95.7%) as well as supercritical fluid chromatography–tandem mass spectrometry (86.5–94.0%). The relative standard deviations for spiked samples were all below 7.0%. Compared with supercritical fluid chromatography–tandem mass spectrometry, lower matrix effects and LODs can be obtained in reversed-phase liquid chromatography–tandem mass spectrometry.  相似文献   

6.
7.
A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 μm, 50 mm × 2.1 mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0–103.4%, with the RSD < 15%. The calibration curves for alkylphenols were linear within the range of 0.01–0.4 μg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 μg/kg.  相似文献   

8.
A rapid multiclass method that covers 50 antimicrobials from 13 different families in animal feeds was developed. Samples were extracted using a mixture of methanol, acetonitrile and a McIlvaine buffer combined with sonication. Feed extracts were simply diluted prior to injection, since the clean-up strategies that were tested, based on either solid-phase extraction or dispersive solid-phase extraction, were ineffective at minimizing matrix-related signal suppression/enhancement. Analysis was carried out by liquid chromatography coupled to tandem mass spectrometry using an electrospray ionization source operating in positive and negative modes. For the quantification, matrix-fortified standard calibration curves were used to compensate for matrix effects and losses in sample preparation. The method was validated in-house in pig, poultry and cattle feed matrices and showed satisfactory performance characteristics. Thus, the proposed approach was suitable for application in a routine high-throughput laboratory for the official control of feeds.
Figure
Multiclass method for antimicrobial analysis in animal feeds.  相似文献   

9.
A new, fast and efficient multiple reaction monitoring (MRM) high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the determination of cyclopiazonic acid (CPA) in mixed feed, wheat, peanuts and rice is presented. The analytical methodology involves sample extraction with an alkaline methanol–water mixture, defatting with hexane and quantification using HPLC–MS/MS without further treatment of sample extracts. Reversed-phase liquid chromatography using a C18 stationary phase coupled to negative mode electrospray triple quadrupole tandem mass spectrometry was applied. The limit of detection was 5 μg/kg while the limit of quantification was 20 μg/kg in the matrices investigated. The detector response was found to be linear over the range 25–250 μg/kg in feed and 25–500 μg/kg in wheat, peanuts and rice. The mean overall recoveries (n = 18) of CPA varied from 79% to 114% in the range of concentrations studied over a period of 4 months. Mean recoveries (n = 3 or 6) of CPA in wheat, peanuts and rice varied from 70% to 111%, 77% to 116% and 69% to 92%, respectively. The method was successfully applied to the analysis of feed and rice samples artificially infected with the fungal strain Penicillium commune, where the toxin was found at different levels.  相似文献   

10.
This work reports a rapid, reliable and sensitive multi-residue method for the simultaneous determination of six resorcylic acid lactones in bovine milk by ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). The resorcylic acid lactones were extracted, purified, and concentrated from milk samples in one step using a solid-phase extraction (SPE) cartridge that contained a polymeric mixed-mode anion-exchange sorbent. The analysis was performed on a Waters Acquity BEH C18 column utilizing a gradient elution profile. Each LC run was completed in 3.5 min. The analytes were detected by multiple reaction monitoring (MRM) using electrospray ionization (ESI) negative mode. Mean recoveries from fortified samples ranged from 92.6% to 112.5%, with relative standard deviations lower than 11.4%. Using 5 mL bovine milk, the limits of detection and quantification for resorcylic acid lactones were in the ranges of 0.01–0.05 and 0.05–0.2 μg/L, respectively. The application of this newly developed method was demonstrated by analyzing bovine milk samples from markets.  相似文献   

11.
Concentrations of amino acids in a human plasma pool were determined using four independent quantification methods. Orthogonal separation schemes (LC, GC, or GC×GC) and detection systems (triple quadrupole or time-of-flight mass spectrometry) are shown to demonstrate excellent consistency among platforms for quantifying 18 amino acids in NIST Standard Reference Material (SRM) 1950 Metabolites in Human Plasma using a well-characterized isotope dilution (ID) quantification method. Measured levels were consistent with reference values in plasma from the literature. Individual amino acid concentrations in plasma varied by over an order of magnitude ranging from 1.83 μg/g to 28.0 μg/g (7.78 μmol/L to 321 μmol/L). Average variability (coefficient of variation) between experimental amino acid concentrations (excluding cysteine) among all methods was 6.3%. Certified mass fraction values for amino acids in NIST SRM 1950 will be established from statistically weighted means of all experimental results.  相似文献   

12.
Current urinary bladder cancer diagnosis is commonly based on a biopsy obtained during cystoscopy. This invasive method causes discomfort and pain in patients. Recently, taurine and several other compounds such as L-phenylalanine and hippuric acid in urine were found to be indicators of bladder cancer. However, because of a lack of sensitive and accurate analytical techniques, it is impossible to detect these compounds in urine at low levels. In this study, using liquid chromatography–tandem mass spectrometry (LC-MS/MS), a noninvasive method was developed to separate and detect these compounds in urine. 15N2-L-glutamine was used as the internal standard, and creatinine acted as an indicator for urine dilution. A phenyl-hexyl column was used for the separation at an isocratic condition of 0.2% formic acid in water and 0.2% formic acid in methanol. Analytes were detected in multiple-reaction monitoring with positive ionization mode. The limit of detection range is 0.18–6 nM and the limit of quantitation ranges from 0.6 to 17.6 nM. The parameters affecting separation and quantification were also investigated and optimized. Proper clinical validation of these biomarkers can be done using this reliable, fast, and simple method. Furthermore, with simple modifications, this method could be applied to other physiological fluids and other types of diseases.  相似文献   

13.
A sensitive and reliable liquid chromatographic-tandem mass spectrometric method for enantiomeric determination of five chiral azole antifungals (econazole, ketoconazole, miconazole, tebuconazole, and propiconazole) in wastewater and sludge has been established and validated. An isotope-labeled internal standard was used for quantification. Recovery of the individual enantiomers was usually in the range of 77-102 % for wastewater and 71-95 % for sludge, with relative standard deviations within 20 %. No significant difference (p>0.05) was observed between recovery of pairs of enantiomers of the chiral azole antifungals except for those of tebuconazole. Method quantification limits for individual enantiomers were 0.3-10 ng L(-1) and 3-29 ng g(-1) dry weight for wastewater and sludge, respectively. The method was used to investigate the enantiomeric composition of the azole pharmaceuticals in wastewater and sludge samples from a sewage treatment plant in China. Enantiomers of miconazole, ketoconazole, and econazole were widely detected. The results showed that the azole antifungals in wastewater and sludge were generally racemic or marginally non-racemic. The method is a useful tool for investigation of the enantiomeric occurrence, behavior, and fate of the chiral azole antifungals in the environment.  相似文献   

14.
A sensitive liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of 13 steroidal anti-inflammatory drugs in bovine milk is presented. Due to their weakly acid nature, analytes were separated by ion suppression reversed phase chromatography and detected in positive-ion mode by a high flow electrospray source. Dexamethasone-d4 was used as internal standard. The sample preparation was simple and reliable; it included acidic deproteinization of milk followed by sample enrichment and clean-up, utilizing a C18 solid phase extraction cartridge. Recoveries exceeded 70% with an intra-day precision not larger than 12%. The efficiency of the sample clean-up and internal standardization rendered negligible the matrix effect, estimated by comparing standard and matrix-matched calibration curves. A small-scale reconnaissance was carried out on several raw and whole fresh milk samples. A large number of analyzed samples showed a chromatographic peak, in the retention time window of cortisol, at levels included between its decision limit (CCα) and detection capability (CCβ). As a result of a heat-induced transformation, an isomeric product of triamcinolone was observed during the extract evaporation. Since this rearrangement might occur during the milk pasteurization process, LC-MS/MS and 1H-NMR investigations were performed out to conclusively differentiate the two isomers. One- and two-dimensional proton NMR spectra were able to identify the transformation product as 9a-fluoro-11b,16a-trihydroxy-17b-hydroxymethyl-D-homoandrosta-1,4-diene-3,17a-dione.  相似文献   

15.
An analytical method for determination and confirmation of nine coccidiostatics in eggs is reported. Ethyl acetate is used as extraction solvent, with satisfactory results, and simple automated clean-up is based on gel-permeation chromatography (GPC) . The target compounds are then analysed by liquid chromatography–electrospray ionization–tandem mass spectrometry. The method was validated in-house in accordance with Commission Decision 2002/657/EC. Trueness and precision were determined at four concentrations, and the mean errors obtained were <10 %, with relative standard deviations ranging from 3 to 18 %. For three non-authorized coccidiostatics (clopidol, ethopabate, and ronizadole), decision limit and detection capability were in the ranges 0.12–0.16 and 0.18–0.23 μg kg?1, respectively. The results obtained prove the suitability of this new analytical method for routine monitoring of these substances in eggs.  相似文献   

16.
17.
High-performance liquid chromatography-tandem mass spectrometry has been used to identify isoflavone aglycones and glycosides in kudzu root. Fourteen isoflavones were detected. Among these, six were identified by comparison with authentic standards. Tentative identifications of the other isoflavones are based on UV spectra, mass spectra of protonated and deprotonated molecules, and MS-MS data. Several are reported for the first time in kudzu root. The bioactivity and bioavailability of isoflavone aglycones are usually greater than those of their glycosides. To improve the bioavailability of kudzu root isoflavones, crude beta-glycosidases prepared from microbes were used to hydrolyze the isoflavone glycosides. Several MS modes are combined not only to identify the isoflavones in kudzu root, but also to describe the biotransformation of kudzu root isoflavone glycosides. It is also proved that crude beta-glycosidases have high selectivity toward the O-glycosides of isoflavones.  相似文献   

18.
In this paper, as novelties to the field, it is confirmed at first, that the fruits of Cirsium species, regarded as injurious weeds, do contain lignans, two, different butyrolactone-type glycoside/aglycone pairs: the well known arctiin/arctigenin and the particularly rare tracheloside/trachelogenin species. These experiences were supported by gas chromatography–mass spectrometry (GC–MS), by liquid chromatography tandem mass spectrometry (LC–MS/(MS)) and by nuclear magnetic resonance (NMR) spectroscopy. The study reflects the powerful impact of the complementary chromatographic mass fragmentation evidences resulting in the identification and quantification, the extremely rare, with on line technique not yet identified and described, tracheloside/trachelogenin pair lignans, without authentic standard compounds. Fragmentation pattern analysis of the trimethylsilyl (TMS) derivative of trachelogenin, based on GC–MS, via two different fragmentation pathways confirmed the detailed structure of the trachelogenin molecule. The complementary chromatographic evidences have been unambiguously confirmed, by 1H and 13C NMR analysis of trachelogenin, isolated by preparative chromatography. Identification and quantification of the fruit extracts of four Cirsium (C.) species (C. arvense, C. canum, C. oleraceum, and C. palustre), revealed that (i) all four species do accumulate the tracheloside/trachelogenin or the arctiin/arctigenin butyrolactone-type glycoside/aglycone pairs, (ii) the overwhelming part of lignans are present as glycosides (tracheloside 9.1–14.5 mg/g, arctiin 28.6–39.3 mg/g, expressed on dry fruit basis), (iii) their acidic and enzymatic hydrolyses to the corresponding aglycones, to trachelogenin and arctigenin are fast and quantitative and (iv) the many-sided beneficial trachelogenin and arctigenin can be prepared separately, without impurities, excellent for medicinal purposes.  相似文献   

19.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed to determine pantoprazole sodium (PNT) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C18 column (symmetry 3.5 μm; 75 mm × 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of acetonitrile–water (90:10, v/v). The method was linear over a concentration range of 1–100 ng mL?1. The lower limit of quantitation was 1 ng mL?1. The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was <10.5%. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ng mL?1 PNT) was within ±1.25% in terms of relative errors.  相似文献   

20.
Surfactants and their metabolites can be found in aquatic environments at relatively high concentrations compared with other micropollutants due in part to the exceptionally large volumes produced every year. We have focused our attention here on the most widely used nonionic surfactants, alcohol ethoxylates (AEOs), and on nonylphenol ethoxylate (NPEO) degradation products (short-chain nonylphenol ethoxylates, NP1-3EO, nonylphenol, NP, and nonylphenol ethoxycarboxylates, NP1-2EC), which are endocrine-disrupting compounds. Our main objective in this work was to develop a methodology aimed at the extraction, isolation, and improved analysis of these analytes in environmental samples at trace levels. Extraction recoveries of target compounds were determined for sediment samples after ultrasonic extraction and purification using HLB or C18 solid-phase extraction minicolumns. Recovery percentages were usually between 61 and 102% but were lower for longer AEO ethoxymers. Identification and quantification of target compounds was carried out using a novel ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS-MS) approach, a combination that provides higher sensitivity and faster analysis than prior methods using conventional high-performance liquid chromatography–mass spectrometry. Limits of detection were usually below 0.5 ng/g, being higher for monoethoxylate species (>5 ng/g) because of poor ionization. The method was used for analyzing surface sediment samples collected at Jamaica Bay (NY) in 2008. The highest values (28,500 ng/g for NP, 4,200 ng/g for NP1-3EO, 22,400 ng/g for NP1-2EC, and 1,500 ng/g for AEOs) were found in a sampling station from a restricted water circulation area that is heavily impacted by wastewater discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号