首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Amino acid analysis (AAA) has always presented an analytical challenge in terms of sample preparation, separation, and detection. Because of the vast number of amino acids, various separation methods have been applied taking into consideration the large differences in their chemical structures, which span from nonpolar to highly polar side chains. Numerous separation methods have been developed in the past 60 years, and impressive achievements have been made in the fields of separation, derivatization, and detection of amino acids (AAs). Among the separation methods, liquid chromatography (LC) prevailed in the AAA field using either pre-column or post-column labeling techniques in order to improve either separation of AAs or selectivity and sensitivity of AAA. Of the two approaches, the post-column technique is a more rugged and reproducible method and provides excellent AAs separation relatively free from interferences. This review considers current separations combined with post-column labeling techniques for AAA, comparison with the pre-column methods, and the strategies used to develop effective post-column methodology. The focus of the article is on LC methods coupled with post-column labeling techniques and studying the reactions to achieve optimum post-column derivatization (PCD) conditions in order to increase sensitivity and selectivity using various types of detectors (UV–Vis, fluorescence, electrochemical etc.) and illustrating the versatility of the PCD methods for practical analysis.
Figure
Reaction‐detection scheme for the fluorescent derivative of proline with o‐pthalaldehyde reagent  相似文献   

2.
The cloud point extraction procedure is an alternative to liquid–liquid extraction and based on the phase separation that occurs in aqueous solutions of non-ionic surfactants when heated above the so-called cloud point temperature. We review the more recent applications for determination of ions by means of this procedure for sample preparation over the range 2009 to first part of 2011. Following an introduction, the article covers aspects of cloud point extraction of one metal ion, two metals ions simultaneously, three metal ions simultaneously, multielement analysis, anions analysis, and on-line cloud point extraction. One hundred sixteen references are cited.
Figure
Scheme of the CPE procedure. CPE techniques exploit a property of most non-ionic surfactants that form micelles in aqueous solution: they become turbid when heated to the appropriate cloud point temperature. Above the cloud point temperature, the micellar solution separates into a small, surfactant rich phase and a larger diluted aqueous phase  相似文献   

3.
The amino acid content of fruit and fruit-derived foods is studied intensely because of the contribution to nutritional value, aroma, taste and health-promoting effects and their possible use as markers of origin and authenticity. In this review, based on 101 references, the most recent trends in the analysis of amino acids are presented: the most important techniques, the different sample treatment procedures (including derivatisation) and the most frequent applications are described and compared. Pertinent publications were retrieved from Scopus and Web of Knowledge database searches lastly performed in February 2012 with the keywords "amino acid", "analysis", "liquid chromatography", "gas chromatography", "electrophoresis", "fruit", and "vegetables"; the time limit was set from the year 2000 onwards. Although amino acids have been analysed in foods for decades, new technical possibilities and advancements have allowed ever-increasing accuracy and targeting of the methods in order to overcome the challenges posed by the complex plant matrices and their high intrinsic variability.
Figure
Amino acid analysis in fruits  相似文献   

4.
We developed a novel polyacrylamide gel electrophoresis (PAGE) method to stack and separate human hemoglobins (Hbs) based on the concept of moving reaction boundary (MRB). This differs from the classic isotachophoresis (ITP)-based stacking PAGE in the aspect of buffer composition, including the electrode buffer (pH 8.62 Tris–Gly), sample buffer (pH 6.78 Tris–Gly), and separation buffer (pH 8.52 Tris–Gly). In the MRB-PAGE system, a transient MRB was formed between alkaline electrode buffer and acidic sample buffer, being designed to move toward the anode. Hbs carried partial positive charges in the sample buffer due to its pH below pI values of Hbs, resulting in electromigrating to the cathode. Hbs would carry negative charges quickly when migrated into the alkaline electrode buffer and be transported to the anode until meeting the sample buffer again. Thus, Hbs were stacked within a MRB until the transient MRB reached the separation buffer and then separated by zone electrophoresis with molecular sieve effect of the gel. The experimental results demonstrated that there were three clear and sharp protein zones of Hbs (HbA1c, HbA0, and HbA2) in MRB-PAGE, in contrast to only one protein zone (HbA0) in ITP-PAGE for large-volume loading (≥15 μl), indicating high stacking efficiency, separation resolution, and good sensitivity of MRB-PAGE. In addition, MRB-PAGE was performed in a conventional slab PAGE device, requiring no special device. Thus, it could be widely used in separation and analysis of diluted protein in a standard laboratory.
Figure
Diagram of MRB-induced stacking in a slab PAGE. (A) arrangement of separation buffer (pH 8.01–9.55 Tris–Gly), sample buffer (pH 6.37–7.22 Tris–Gly), and electrode buffer (pH 8.21–9.05 Tris–Gly); (B) initial MRB formed between electrode and sample buffers for stacking of low-content Hbs in sample buffer under electric field; (C) MRB moving toward the anode and partly stacking of Hbs within the MRB; (D) quasi-complete stacking of Hbs via MRB closing to the separating gel; (E) separation of Hbs in a zone electrophoresis mode  相似文献   

5.
Traces of prebiotic amino acids, i.e., the building blocks of proteins, are excellent biomarkers that could provide evidence of extinct or extant life in extra-terrestrial environments. In particular, characterization of the enantiomeric excess of amino acids gives relevant information about the biotic or abiotic origin of molecules, because it is generally assumed that life elsewhere could be based on either l or d amino acids, but not both. The analytical procedures used in in-situ space missions for chiral discrimination of amino acids must meet severe requirements imposed by flight conditions: short analysis time, low energy consumption, robustness, storage for long periods under extreme conditions, high efficiency and sensitivity, automation, and remote-control operation. Such methods are based on gas chromatography, high-pressure liquid chromatography, and capillary electrophoresis, usually coupled with mass spectrometry; of these, gas chromatography–mass spectrometry (GC–MS) is the only such combination yet used in space missions. Preliminary in-situ sample derivatization is required before GC–MS analysis to convert amino acids into volatile and thermally stable compounds. The silylation reagent most commonly used, N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, is unsuitable for detection of homochirality, and alternative derivatization techniques have been developed that preserve the stereochemical configuration of the original compounds and are compatible with spaceflight conditions. These include the reagent N,N-dimethylformamide dimethylacetal, which has already been used in the Rosetta mission, a mixture of alkyl chloroformate, ethanol, and pyridine, a mixture of perfluorinated anhydrides and perfluoro alcohols, and hexafluoroacetone, the first gaseous derivatizing agent. In all the space instruments, solvent extraction of organic matter and chemical derivatization have been combined in a single automatic and remote-controlled procedure in a chemical reactor. Liquid-based separation systems have been used in space missions. In particular, microchip capillary electrophoresis, based on microfluidic lab-on-a-chip systems, enables high-performance chemical analysis of amino acids with low mass and volume equipment and low power and reagent consumption. Coupling with laser-induced fluorescence detectors results in ultra-low limits of detection. This critical review describes applications of the on-board instruments used in the Rosetta mission to comets and in the more recent Mars exploration program, i.e., the Mars Science Laboratory and ExoMars missions.
Figure
Enantioselective separation of amino acids in in situ space missions could provide evidence of extinct or extant life in extra-terrestrial environments.  相似文献   

6.
Various chiral selectors have been utilized successfully in capillary electrophoresis (CE); however, the number of polysaccharides used as chiral selectors is still small and the mechanism of enantiorecognition has not been fully elucidated. Chondroitin sulfate D (CSD) and chondroitin sulfate E (CSE), belonging to the group of glycosaminoglycans, are linear, sulfated polysaccharides with large mass. In this paper, they were investigated for the first time for their potential as chiral selectors by CE. The effect of buffer composition and pH, chiral selector concentration, and applied voltage were systematically examined and optimized. A variety of drug enantiomers were resolved in the buffer pH range of 2.8–3.4 using 20 mM Tris/H3PO4 buffer with 5.0 % CSD or CSE and 20 kV applied voltage. A central composite design was used to validate the optimized separation parameters and satisfactory uniformity was obtained. As observed, CSE allowed satisfactory separation of the enantiomers of amlodipine, laudanosine, nefopam, sulconazole, and tryptophan methyl ester, as well as partial resolution of citalopram, duloxetine, and propranolol under the optimized conditions. CSD allowed partial or nearly baseline separation of amlodipine, laudanosine, nefopam, and sulconazole. The results indicated that CSE has a better enantiorecognition capability than CSD toward the tested drugs.
Figure
Chiral separation of various drug enantiomers in CE with CSE (A) and CSD (B) as chiral selectors  相似文献   

7.
We report a chiral high-performance liquid chromatographic enantioseparation method for free α-aminophosphonic, β-aminophosphonic, and γ-aminophosphonic acids, aminohydroxyphosphonic acids, and aromatic aminophosphinic acids with different substitution patterns. Enantioseparation of these synthons was achieved by means of high-performance liquid chromatography on CHIRALPAK ZWIX(+) and ZWIX(-) (cinchona-based chiral zwitterionic ion exchangers) under polar organic chromatographic elution conditions. Mobile phase characteristics such as acid-to-base ratio, type of counterion, and solvent composition were systematically varied in order to investigate their effect on the separation performance and to achieve optimal separation conditions for the set of analytes. Under the optimized conditions, 32 of 37 racemic aminophosphonic acids studied reached baseline separation when we employed a single generic mass-spectrometry-compatible mobile phase, with reversal of the elution order when we used (+) and (-) versions of the chiral stationary phase.
Figure
New zwitterionic ion-exchangers can separate free amino phosphonic acids and a change from Chiralpak ZWIX(+) to ZWIX(-) allows reversal of enantiomer elution order  相似文献   

8.
The application of microwave-assisted extraction (MAE) to the work-up of environmental and biological samples in the study of mercury speciation analysis has increased in recent years and is now increasingly accepted as a standard approach. The review provides a brief theoretical background of microwave heating and the basic principles of microwave energy used for extraction. The advantages and disadvantages of (a) MAE techniques, (b) the influence of the main parameters affecting the extraction, (c) statistical optimization approaches, and (d) strategies for method validation also are highlighted. Recent applications of MAE to mercury species analyses in biological samples, soils, sediments, and crude oil samples are surveyed and critically reviewed. In addition, comparisons of its use with other well-established extraction procedures are discussed.
Figure
Microwave-assisted extraction has become a very useful sample preparation techniques in the study of mercury speciation in environmental and biological samples  相似文献   

9.
A method for simultaneous enantioselective determination of fenarimol and nuarimol in apple, grape, cucumber, tomato, and soil was developed using liquid chromatography–tandem mass spectrometry. The enantioseparation results of the two fungicides through three different cellulose-based chiral columns are discussed. The influence of column temperature on the resolution of the enantiomers of the two fungicides was examined. Complete enantioseparation of the two fungicides’ enantiomers was obtained on a cellulose tris(4-methylbenzoate) column (Lux Cellulose-3) at 25?°C using methanol and 0.1?% formic acid solution (80:20, v/v) as mobile phase. The linearity, matrix effect, recovery, and precision were evaluated. Good linearity was obtained over the concentration range of 1–500?μg?L?1 for each enantiomer in the standard solution and sample matrix calibration solution. There was no significant matrix effect in apple, grape, cucumber, or tomato samples, but signal suppression was typically observed with the soil extracts. The mean recoveries, repeatability, and reproducibility were 76.5–103?%, 2.1–9.0?%, and 4.2–11.8?%, respectively. The limit of quantification for enantiomers of the two fungicides in fruits, vegetables and soil was 5?μg?kg?1. Moreover, the absolute configuration of the enantiomers of fenarimol and nuarimol was determined from a combination of experimentally determined and predicted electronic circular dichroism spectra.
Figure
Predicted ECD spectra of nuarimol enantiomers (a) and fenarimol enantiomers (b). Experimentally measured ECD spectra of nuarimol enantiomers (c) and fenarimol enantiomers (d) in acetonitrile (20?mg?L?1)  相似文献   

10.
Conventional electrospray ionization mass spectrometry (ESI-MS) uses a capillary for sample loading and ionization. Along with the development of ambient ionization techniques, ESI-MS using noncapillary emitters has attracted more interest in recent years. Following our recent report on ESI-MS using wooden tips (Anal. Chem. 83, 8201–8207 (2011)), the technique was further investigated and extended in this study. Our results revealed that the wooden tips could serve as a chromatographic column for separation of sample components. Sequential and exhaustive ionization was observed for proteins and salts on wooden tips with salts ionized sooner and proteins later. Nonconductive materials that contain microchannels/pores could be used as tips for ESI-MS analysis with sample solutions loaded to the sharp-ends only, since rapid diffusion of sample solutions by capillary action would enable the tips to become conductive. Tips of inert materials such as bamboo, fabrics, and sponge could be used for sample loading and ionization, while samples such as tissue, mushroom, and bone could form tips to induce ionization for direct analysis with application of a high voltage.
Figure  相似文献   

11.
Numerous strategies have been developed to mitigate the intrinsic low detection sensitivity that is a limitation of capillary electrophoresis. Among them, in-line stacking is an effective strategy to address the sensitivity challenge, and among the different stacking techniques, stacking based on field amplification is the most effective and simplest method of achieving high sensitivity without special complicated mechanisms or operations. This review introduces several stacking techniques based on field amplification. Field-amplified sample stacking, large-volume sample stacking, matrix field-amplified stacking injection (FASI), head-column FASI, matrix FASI combined with head-column FASI, FASI coupled with extraction and clean-up methods, electrokinetic supercharging, cation–anion selective exhaustive injection-sweeping-micellar electrokinetic chromatography, and newly developed techniques based on field amplification combined with other methods are included, and examples of straightforward methods for solving the sensitivity problem are provided. We also present a brief overview of the advantages, limitations, and future developments of these techniques. Graphical Abstract
?  相似文献   

12.
The fluorescent tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ Fluor reagent kit from Waters) is a commercial N-terminal label for proteinogenic amino acids (AAs), designed for reversed-phase separation and quantification of the AA racemates. The applicability of AQC-tagged AAs and AA-type zwitterionic compounds was tested for enantiomer separation on the tert-butyl carbamate modified quinine and quinidine based chiral stationary phases, QN-AX and QD-AX employing polar-organic elution conditions. The investigated test analytes included the enantiomers of the positional isomers of isoleucine (Ile), threonine, homoserine, and 4-hydroxyproline. Furthermore, β-AAs, cyclic, and heterocyclic AAs including trans-2-amino-cyclohexane carboxylic acid and trans-2-aminocyclohexyl sulfonic acid, phenylalanine derivatives substituted with halides with increasing electronegativity and 3,4-dihydroxyphenylalanine, cysteine-related derivatives including homocysteic acid, methionine sulfone, cysteine-S-acetic acid, and cysteine-S-acetamide as well as a small range of aminophosphonic acids were enantioseparated. A mechanistic interaction study of AQC-AAs in comparison with fluoresceine isothiocyanate-labeled AAs was performed. The chiral and chemoselective recognition processes involved in enantiomer separation and retention was systematically discussed. Special emphasis was set on the influential factors exhibited by the chemistry, branching position, and spatial properties of the investigated zwitterionic analytes. The general interest to separate and distinguish between different types of branched-chained AAs and metabolic side products thereof lies in the toxicity of some of these compounds, which makes for instance allo–Ile an attractive candidate in disease-related biomarker research.
Figure
Separation of the four AQC-tagged isomers of 4-hydroxyproline (trans-D, cis-D, trans-L and cis-L) on the chiral stationary phase QD-AX  相似文献   

13.
Foodborne illnesses caused by pathogenic bacteria represent a widespread and growing problem to public health, and there is an obvious need for rapid detection of food pathogens. Traditional culture-based techniques require tedious sample workup and are time-consuming. It is expected that new and more rapid methods can replace current techniques. To enable large scale screening procedures, new multiplex analytical formats are being developed, and these allow the detection and/or identification of more than one pathogen in a single analytical run, thus cutting assay times and costs. We review here recent advancements in the field of rapid multiplex analytical methods for foodborne pathogenic bacteria. A variety of strategies, such as multiplex polymerase chain reaction assays, microarray- or multichannel-based immunoassays, biosensors, and fingerprint-based approaches (such as mass spectrometry, electronic nose, or vibrational spectroscopic analysis of whole bacterial cells), have been explored. In addition, various technological solutions have been adopted to improve detectability and to eliminate interferences, although in most cases a brief pre-enrichment step is still required. This review also covers the progress, limitations and future challenges of these approaches and emphasizes the advantages of new separative techniques to selectively fractionate bacteria, thus increasing multiplexing capabilities and simplifying sample preparation procedures.
Figure
New analytical formats are under development to allow multiplexed detection of foodborne pathogens, thus cutting assay times and costs and enabling large scale screening procedures. A variety of analytical strategies are being explored to reach this goal. This review covers the recent progresses, limitations and future challenges of these approaches  相似文献   

14.
Natural extracts used by the fragrance and cosmetics industries, namely essential oils, concretes, resinoids, and absolutes, are produced from natural raw materials. These are often cultivated by use of monoculture techniques that involve the use of different classes of xenobiotica, including pesticides. Because of these pesticides’ potential effect on public health and the environment, laws regarding permitted residual levels of pesticides used in cultivation of raw materials for fragrance and cosmetic products are expected to become stricter. The purpose of this review is to present and classify pesticides commonly used in the cultivation of these natural raw materials. We will summarize the most recent regulations, and discuss publications on detection of pesticides via chemical analysis of raw natural extracts. Advances in analytical chemistry for identification and quantification of pesticides will be presented, including both sample preparation and modern separation and detection techniques, and examples of the identification and quantification of individual pesticides present in natural extracts, for example essential oils, will be provided.
Figure
The multidimensional gas chromatogramm depicts coelution of molecular ingredients of a rose essential oil spiked with an ethion pesticide  相似文献   

15.
The on-line combination of comprehensive two-dimensional liquid chromatography (LC?×?LC) with the 2,2′-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid (ABTS) radical scavenging assay was investigated as a powerful method to determine the free radical scavenging activities of individual phenolics in natural products. The combination of hydrophilic interaction chromatography (HILIC) separation according to polarity and reversed-phase liquid chromatography (RP-LC) separation according to hydrophobicity is shown to provide much higher resolving power than one-dimensional separations, which, combined with on-line ABTS detection, allows the detailed characterisation of antioxidants in complex samples. Careful optimisation of the ABTS reaction conditions was required to maintain the chromatographic separation in the antioxidant detection process. Both on-line and off-line HILIC?×?RP-LC–ABTS methods were developed, with the former offering higher throughput and the latter higher resolution. Even for the fast analyses used in the second dimension of on-line HILIC?×?RP-LC, good performance for the ABTS assay was obtained. The combination of LC?×?LC separation with an on-line radical scavenging assay increases the likelihood of identifying individual radical scavenging species compared to conventional LC–ABTS assays. The applicability of the approach was demonstrated for cocoa, red grape seed and green tea phenolics.
Figure
On-line HILIC×RP-LC–ABTS analysis of cocoa proanthocyanidins  相似文献   

16.
Single-dimension separations are routinely coupled in series to achieve two-dimensional separations, yet little has been done to simultaneously exploit multiple dimensions during separation. In this work, simultaneous chromatography and electrophoresis is introduced and evaluated for its potential to achieve two-dimensional separations. In simultaneous chromatography and electrophoresis, chromatography occurs via capillary action while an orthogonal electric field concurrently promotes electrophoresis in a second dimension. A novel apparatus with a dual solvent reservoir was designed to apply the concurrent electric field. Various compounds were used to characterize the apparatus and technique, i.e., vitamins, amino acids, and dyes. Improved separation is reported with equivalent analysis times in comparison to planar chromatography alone. The feasibility of simultaneously employing chromatography and electrophoresis in two dimensions is discussed.
Figure
Separation of eight dyes is improved in comparison to (a) planar chromatography alone when employing (b) simultaneous chromatography and electrophoresis  相似文献   

17.
2-Acetyldimedone and 12 related compounds were employed as UV-active pre-column derivatizing agents for amino acids. Direct enantioseparation of the products was achieved using chiral anion exchanger stationary phases in polar-organic mobile phase mode. Under basic conditions, the reagents´ cyclic β-tricarbonyl motifs can give rise to exo- and endocyclic enols through tautomerization. However, with primary amines (proteinogenic and unusual amino acids, aminosulfonic and aminophosphonic acids), we exclusively observed the formation of exocyclic enamine-type products. Reaction yields depended strongly on the 2-acyl modification of the reagent; in particular, we observed a significant decrease when electronegative or sterically demanding substituents were present in α-position to the exocyclic carbonyl group. In addition to improving UV detectability of the products, the introduction of this protective group facilitated successful enantiomer separations of the amino acid derivatives on Cinchona-based chiral anion exchangers. Particularly high enantiomer selectivity was observed in combination with stationary phases bearing a new variation of selectors with π-acidic (electron-poor) bis(trifluoromethyl)phenyl groups. No racemization of the analytes occurred at any stage of the analytical method including the deprotection, which was achieved with hydrazine.
Figure
Enantiomer separation of 2-undecenoyldimedone derivatives of proteinogenic amino acids phenylalanine and tryptophan on a chiral stationary phase with anion-exchange characteristics  相似文献   

18.
Mass spectrometry-based strategies are widely used for mapping of post-translational modifications of phosphoproteins. However, the presence of large amounts of non-phosphopeptides seriously interferes by suppressing the intensities of signals for phosphopeptides in direct MALDI-MS techniques due to the low stoichiometry of protein phosphorylation. Several MALDI-MS approaches are known which use either nanoparticles (NPs) as affinity probes, or NPs as microwave heat absorbers. They assist in the enrichment of trace levels of phosphopeptides from complex protein digests and require minimal sample pretreatment, digestion times, and sample volume. This leads to enhance sensitivity and selectivity in the analysis of the phosphoproteomes. This review (with 89 refs.) summarizes and discusses recent developments in the field, with a particular focus on the potential use of nanomaterials such as metal oxides, metal NPs, NPs-coated target plates, and as core-shell nanocomposites acting as affinity probes and as heat absorbers in MALDI-MS analysis of phosphoproteomes.
Figure
We discuss recent developments in the field with the focus on the potential use of nanomaterials, including metal oxides, metal NPs, NPs-coated target plate, core-shell microsphere nanocomposites as affinity probes and as heat absorbers to enhance the performance of MALDI-MS to phosphoproteome analysis. Schematic representation of microwave tryptic digest of casein proteins and their enrichment using DDTC-Au NPs as affinity probes.  相似文献   

19.
The first multisyringe-based low-pressure ion chromatographic method is presented. It is based on the use of short surfactant coated octadecyl-silica monolithic columns. As a first application, we have determined oxalate in beer and human urine via post-column chemiluminescence detection. Oxalate is separated from the sample matrix in the monolithic column by precise programmable fluid handling, and then detected by reaction with on-line generated tris(2,2??-bipyridyl)ruthenium(III). Column coating, un-coating, ion chromatography and chemiluminescence detection are quickly performed by using a simple low-pressure multi-burette. The factors influencing the separation of oxalate and its subsequent detection, including the column coating with surfactants and its stability have been studied. The chromatographic behavior of the oxalate in presence of potentially interfering species also was assessed. The method has limits of detection and quantification of 0.025 and 0.035?mg?L?1, respectively, a relative standard deviation of 3.1% (for 10 consecutive measurements without column re-coating) and a throughput of 48?h?1. The results obtained with real samples were validated by using an enzymatic spectrophotometric test. The method is critically compared to recent methods for the determination of oxalate.
Automated MSFIA system incorporating a C18 monolithic column (MC) coated with CTAB for the separation of oxolate and its post-column chemiluminescence detection  相似文献   

20.
Stereochemistry plays an important role in biochemistry, particularly in therapeutic applications. Indeed, enantiomers have different biological activities, which can have important consequences. Many analytical techniques have been developed in order to allow the identification and the separation of stereoisomers. Here, we focused our work on the study of small diastereomers using the coupling of traveling wave ion mobility and mass spectrometry (TWIMS-MS) as a new alternative for stereochemistry study. In order to optimize the separation, the formation of adducts between diastereomers (M) and different alkali cations (X) was carried out. Thus, monomers [M + X]+ and multimers [2M + X]+ and [3M + X]+ ions have been studied from both experimental and theoretical viewpoints. Moreover, it has been shown that the study of the multimer [2Y + M + Li]+ ion, in which Y is an auxiliary diastereomeric ligand, allows the diastereomers separation. The combination of cationization, multimers ions formation, and IM-MS is a novel and powerful approach for the diastereomers identification. Thus, by this technique, diastereomers can be identified although they present very close conformations in gaseous phase. This work presents the first TWIMS-MS separation of diastereomers, which present very close collision cross section thanks to the formation of multimers and the use of an auxiliary diastereomeric ligand.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号