首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The results of recent research indicate that the introduction of layered silicate - montmorillonite - into polymer matrix results in increase of thermal stability of a number of polymer nanocomposites. Due to characteristic structure of layers in polymer matrix and nanoscopic dimensions of filler particles, several effects have been observed that can explain the changes in thermal properties. The level of surface activity may be directly influenced by the mechanical interfacial adhesion or thermal stability of organic compound used to modify montmorillonite. Thus, increasing the thermal stability of montmorillonite and resultant nanocomposites is one of the key points in the successful technical application of polymer-clay nanocomposites on the industrial scale. Basing on most recent research, this work presents a detailed examination of factors influencing thermal stability, including the role of chemical constitution of organic modifier, composition and structure of nanocomposites, and mechanisms of improvement of thermal stability in polymer/montmorillonite nanocomposites.  相似文献   

3.
4.
On the basis of measurements of 18 high explosives by means of the Czech Vacuum Stability Test (VST) STABIL, a relationship has been specified between the results of this test and those of Russian manometric method. The said relationship was used to predict the Arrhenius parameters (Ea and log A values) of four plastic explosives based on RDX and one high explosive based on PETN (Semtex). The slopes EaR−1 of Kissinger's equation were specified by means of non-isothermal differential thermal analysis (DTA) and evaluation of the measurement results by means of the Kissinger method. The role played by binders and plasticizers in thermal decomposition of nitramines was pointed out on the basis of relationship between the Ea values obtained from VST and the EaR−1 values obtained from DTA, both for plastic explosives, eight nitramines, Composition B and PETN. The relationships between the EaR−1 values and thermostability threshold was specified for the given group of explosives. The relationship classify some of the studied plastic explosives as belonging to nitramines with steric hindrance in the molecule (CPX, TNAZ and HNIW). The relationship between EaR−1 values and drop energies, Edr, sharply differentiates between plastic explosives and individual nitramines. From the relationship between the Edr and D2 values it was found that the increasing performance of the studied nitramines and plastic explosives is connected with the decrease in their impact sensitivity. Also specified are the approximate linear dependences between the peak temperatures of exothermic decomposition of all the explosives studied and their ignition temperatures, Tig, or critical temperatures, Tc; these dependences were applied to prediction of Tig and Tc of both the studied plastic explosives and some of the nitramines.  相似文献   

5.
The poor aging property of the styrene–diene–styrene (SDS) triblock elastomer copolymer hot-melt pressure-sensitive adhesives (HMPSAs) has raised the importance of research on the aging and anti-aging properties of SDS triblock copolymers, such as styrene–butadiene–styrene (SBS) and styrene–isoprene–styrene (SIS). A mechanistic scheme based on the standard scheme for radical chain oxidation, but taking into account the decomposition of the oxidation-induced peroxide, was built. The kinetic equation of oxygen uptake was deduced from the proposed mechanism, which is composed of a set of reasonable parameters. The relationships among the parameters to induction time, maximum oxygen uptake and the maximum oxidation rate were examined. Numerical simulation methods were established to obtain parameters from the experiment data, by which most kinetic equations of oxygen uptake of the ingredients for HMPSAs were numerically fitted and the relativity of the model to the data was discussed. The study results should prove useful for future studies on the anti-aging performance of other materials.  相似文献   

6.
Abstract

Phenacylmethacrylate (PAMA), a new monomer containing two carbonyl groups (C[dbnd]O), was obtained from phenacyl chloride and sodium methacrylate. The homopolymer of PAMA and its copolymer with styrene were prepared in dioxane by using benzoylperoxide (Bz2O2) as initiator. IR, 1H-NMR and 13C-NMR techniques were used to identify the structure of the monomer and polymers. The density of monomer, homopolymer and copolymer were found to be 1.13; 1.35 and 1.10 gr/ml respectively. Also, limit viscosity numbers, solubility parameters, glass transition and decomposition temperatures of polymers were determined.  相似文献   

7.
Two novel copolyimides bearing bulky pendent groups have been prepared by chemical modification of a copolyimide precursor containing carboxylic acid groups. The incorporation of the bulky groups was achieved by esterification of the copolyimide containing carboxylic acid groups with 4-tert-butylbenzyl alcohol. By controlling the carboxylic acid/alcohol ratio, two different degrees of modification were obtained. The actual composition of the modified polymer was estimated by 1H NMR. They showed better solubility than the copolyimide precursor, where 100% modification yielded the copolyimide with the highest solubility properties. Thermal analyses indicated that the incorporation of bulky pendent groups has a moderate effect on decreasing the thermal degradation temperature and the glass transition temperature.  相似文献   

8.
The thermal stability of representative hydrofluoropolyether (HFPE) and hydrofluoroether (HFE) compounds has been evaluated. The observed stability order appears to be correlated with the nature of the hydrogenated chain ends; in particular, molecules having fully hydrogenated chain ends (OCH3 and OC2H5) show a significantly lower stability compared with the OCF2H terminated compounds. The main degradation products suggest, however, that the same primary reaction is responsible for the decomposition of all the compounds examined; this reaction involves the fragmentation of the RfOCxHyFz bond with fluorine transfer between the two carbon atoms close to the oxygen, leading to the formation of a hydrofluorocarbon CxHyF(z+1) and an acyl fluoride or a ketone.  相似文献   

9.
Thermal stability, electrochemical oxidation stability and charge/discharge characteristics of natural graphite powder were investigated by mixing of five fluoro-carbonates with 1 mol/L LiClO4–EC/DEC/PC (1:1:1 vol.). DSC study revealed that thermal stability of the electrolyte solution was improved by mixing of fluoro-carbonates by 10.0–33.3 vol.%. Electrochemical oxidation stability was also improved. Oxidation currents for Pt electrode significantly decreased by mixing of fluoro-carbonates. In the fluoro-carbonate-mixed electrolyte solutions, electrochemical reduction of PC decreased with increasing concentration of fluoro-carbonate and current density. As a result, first coulombic efficiency for natural graphite electrode increased, that is, irreversible capacity decreased in the fluoro-carbonate-mixed solutions.  相似文献   

10.
Structure and thermal stability of microencapsulated phase-change materials   总被引:11,自引:0,他引:11  
A series of microcapsules containing n-octadecane with a urea-melamine-formaldehyde copolymer shell were synthesized by in-situ polymerization. The surface morphology, diameter, melting and crystallization properties, and thermal stability of the microcapsules were investigated by using FTIR, SEM, DSC, TGA and DTA. The diameters of the microcapsules are in the range of 0.2–5.6 m. The n-octadecane contents in the microcapsules are in the range of 65–78wt%. The mole ratio of urea-melamine has been found to have no effect on the melting temperature of the microcapsules. Two crystallization peaks on the DSC cooling curve have been observed. The thermal damage mechanisms are the liquefied n-octadecane leaking from the microcapsule and breakage of the shell due to the mismatch of thermal expansion of the core and shell materials at high temperatures. The thermal stability of materials can be enhanced up to 10 °C by the copolymerization of urea, melamine and formaldehyde in a mole ratio 0.2:0.8:3. The thermal stability of 160 °C heat-treated microcapsules containing 8.8% cyclohexane can be further enhanced up to approximately 37 °C.  相似文献   

11.
Thirteen phosphorus-containing flame retardants were synthesized in this work. The solubilities of flame retardant [(6-oxide-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP) in selected solvents are measured. TGA measurements of the 13 phosphorus-containing flame retardants were carried out and thermal stabilities of three flame-resistant PET (FRPET) resins were investigated. A FRPET incorporated by DDP with terephthalic acid and ethylene glycol reported in literature was also discussed and compared. The thermal stability of the FRPET is improved by the incorporation of phosphorus-containing flame retardants. The LOI values of all phosphorus-containing polyesters are higher than 27%. The improvement of the flame-resistant ability is due to the formation of the char that is not only caused by the existence of phosphorus elements in the resin but also by the relative large number of carbon atoms of the phenyl group in the flame retardants.  相似文献   

12.
To study crystallization process of spinel-type Li1+xMn2−xO4, in-situ high-temperature X-ray diffraction technique (HT-XRD) was utilized for the mixture consisting of Li2CO3 and Mn2O3 as starting material in the temperature range of 25-700 °C. In-situ HT-XRD analysis directly revealed that crystallization process of Li1+xMn2−xO4 was significantly affected by the difference in the Li/Mn molar ratio in the precursor. Single phase of stoichiometric LiMn2O4 formed at 700 °C. The formation of single phase of spinel was achieved at the lower temperature than the stoichiometric sample as Li/Mn molar ratio in the precursor increased. Lattice parameter of the stoichiometric LiMn2O4 at 25 °C was 8.24 Å and expanded to 8.31 Å at 700 °C, which corresponds to the approximately 3% expansion in the unit cell volume. From the slope of the lattice parameter change as a function of temperatures, linear thermal expansion coefficient of the stoichiometric LiMn2O4 was calculated to be 1.2×10−5 °C−1 in this temperature range. When the Li/Mn molar ratio in Li1+xMn2−xO4 increased (x > 0.1), the spinel phase segregated into the Li1+yMn2−yO4 (x > y) and Li2MnO3 during heating, which involved the oxygen loss from the materials. During the cooling process from 700 °C, and the segregated phase merged into Li1+xMn2−xO4 with oxygen incorporation. Such trend directly observed by in-situ HT-XRD was supported by thermal gravimetric analysis as reversible weight (oxygen) loss/gain at higher temperature (500-700 °C).  相似文献   

13.
Rheology and thermal stability of polylactide/clay nanocomposites   总被引:1,自引:0,他引:1  
Polylactide/clay nanocomposites (PLACNs) were prepared by melt intercalation. The intercalated structure of PLACNs was investigated using XRD and TEM. Both the linear and nonlinear rheological properties of PLACNs were measured by parallel plate rheometer. The results reveal that percolation threshold of the PLACNs is about 4 wt%, and the network structure is very sensitive to both the quiescent and the large amplitude oscillatory shear (LAOS) deformation. The stress overshoots in the reverse flow experiments were strongly dependent on the rest time and shear rate but shows a strain-scaling response to the startup of steady shear flow, indicating that the formation of the long-range structure in PLACNs may be the major driving force for the reorganization of the clay network. The thermal behavior of PLACNs was also characterized. However, the results show that with the addition of clay, the thermal stability of PLACNs decreases in contrast to that of pure PLA.  相似文献   

14.
A series of silicone resins containing silphenylene units were synthesized by a hydrolysis-polycondensation method, with methyltriethoxysilane, dimethyldiethoxysilane and 1,4-bis(ethoxydimethylsilyl)benzene. Their thermal degradation behaviours were studied by thermogravimetric analysis (TGA), differential thermogravimetry (DTG) and Fourier-transform infrared (FTIR) spectroscopy, and the effect of silphenylene units on the thermal stability of silicone resins was also investigated. Results showed that the thermal stability of silicone resins was improved by the introduction of silphenylene units into the backbone. Under nitrogen atmosphere, the temperature for maximum degradation rate of silicone resins with silphenylene units was lower compared to the pure methylsilicone resin. With the increase of silphenylene units, the amount of degradation residues increased under nitrogen atmosphere while it decreased under air atmosphere. Additionally, the short-term and long-term stability of silicone resins were also improved by the introduction of silphenylene units.  相似文献   

15.
The isotopic composition of lithium in an NIST SRM 924 Li2CO3, isotopically enriched supplied by ORNL and in seawater has been determined by using thermal ionization mass spectrometry (TIMS) based on the use of lithium phosphate as the ion source. In order to minimize isotopic fractionation, the ion ratio was measured by using a triple filament technique. The method produces a stable, high intensity Li+ ion beam that allows measurement of ng quantities of lithium for several hours. Lithium was separated from sample matrix and further converted to LiOH by employing a two-column ion exchange process. The mass ratio of LiOH to phosphoric acid was nearly stoichiometric in relation to Li3PO4. Lithium isotopes in a reference material supplied by NIST (L-SVEC Li2CO3) was measured to check the reproducibility of the method. A comparison was made between two TIMS units equipped with different types of detectors (a Faraday cup and a secondary electron multiplier). This highly sensitive technique can be applied to determine isotopic composition of Li in enriched isotopes as well as in the examination of low concentration Li reservoirs.  相似文献   

16.
Characterization of fatty acid methyl esters by thermal analysis   总被引:1,自引:0,他引:1  
The thermal stability of selected straight-chain (C6-C14) esters of fatty acids has been studied by TG-DTG and DTA analysis. In DTG, a peak is detected between 84° and 125° C followed by a main effect in the range 105°–215°C, whereas in DTA only an exothermic peak appears in the range of 126.5° to 187°C (onset temperatures). The temperatures of these effects have been related with ignition points, molecular weights and boiling points. The characteristics of melting and recrystallization of the above fatty acid methyl esters and those with carbon numbers between C14 and C24 have been established by DSC along the melting range between ?83° and 50°C. Polymorphism appears in caproic, heptanoic, palmitic and stearic acid methyl esters.  相似文献   

17.
Summary Manufactures of commercially available explosives guarantee a certain lifetime of their products. In the commercial field this lifetime is usually large enough. The explosive is normally used long before the end of its lifetime. It may happen that these explosives are stored for a long time in a bunker where they sometimes exceed their lifetime. A large set of commercial explosives is characterized with a TG by heating small samples in aluminium sample cups from room temperature to 550°C, under a nitrogen atmosphere, with three different heating rates (2, 5 and 10 K min-1). The activation energy of the decomposition step is determined in several different ways. After this characterization, a selection of the samples (based on economical value) is artificially aged for periods of 2, 4 and 6 weeks. After these ageing profiles the samples are re-investigated with the TG under the same conditions (heating rates and atmosphere) followed by the calculation of the kinetic parameters of the artificially aged materials. According to the TG measurements almost all tested explosives appear to have a much longer lifetime than the values given by the manufacturer. From kinetic point of view, the different methods for calculating the activation energy result in approximately the same parameters. It may conclude that TG seems to be a reliable and quick method for the determination of the lifetime of commercial explosives.  相似文献   

18.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

19.
A simple method to prepare nanocrystalline hydroxyapatite (nHAP) is performed using a precipitation method assisted with microwave heating method. This method can be reported notably with high reproducibility and productivity. The received ceramic powder possesses characteristic of needle-shaped nanocrystals with dimension about 50 nm in diameter and 200 nm in length. The particle size distribution has been confirmed being in the range of 28-159 nm. Thermal analyses revealed that nHAP has at least three thermal events influenced by elevated temperatures. Phase stability and microstructure evolution of the nHAP calcined at temperatures range between 700 and 1200 °C are discussed in terms of the formation of secondary phases, the decomposition of HAP releasing carbonate and water. Various experimental techniques have been employed in this work, including powder X-ray diffraction, IR spectroscopy, DSC and TGA thermal analyses, dynamic light scattering and scanning electron microscopy.  相似文献   

20.
A series of new poly(amide-hydrazide)s were obtained by the direct polycondensation of 5-amino 5′-carbohydrazido-2,2′-bipyridine with commercially available diacids by means of triphenyl phosphite and pyridine in the N-methyl-2-pyrrolidone (NMP) solutions containing dissolved LiCl. The resulting hydrazide containing polymers exhibited inherent viscosities in the 0.42-0.64 dL/g range. All copolymers were soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The poly(amide-hydrazide)s had glass-transition temperatures (Tg) between 178 and 206 °C. All hydrazide copolymers could be thermally converted into the corresponding poly(amide-oxadiazole) approximately in the region of 300-400 °C, as evidenced by the DSC thermograms. The oxadiazole polymers and copolymers showed a dramatically decreased solubility and higher Tg when compared to their respective hydrazide prepolymers. They exhibited Tgs of 197-248 °C and were stable up to 450 °C in air or nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号