首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 94 毫秒
1.
介绍了中国工程物理研究院应用电子学研究所关于同轴虚阴极振荡器实验的最新进展。实验结果表明,带阳极反射板结构的同轴虚阴极振荡器比不带阳极反射板结构的同轴虚阴极振荡器输出微波功率更高,频谱更纯。在二极管电压350 kV,电流23 kA条件下,输出微波峰值功率500 MW,能量转换效率约6.2%,工作频率为3.3 GHz。对实验结果进行了理论分析。  相似文献   

2.
同轴虚阴极振荡器实验研究   总被引:1,自引:5,他引:1       下载免费PDF全文
 介绍了中国工程物理研究院应用电子学研究所关于同轴虚阴极振荡器实验的最新进展。实验结果表明,带阳极反射板结构的同轴虚阴极振荡器比不带阳极反射板结构的同轴虚阴极振荡器输出微波功率更高,频谱更纯。在二极管电压350 kV,电流23 kA条件下,输出微波峰值功率500 MW,能量转换效率约6.2%,工作频率为3.3 GHz。对实验结果进行了理论分析。  相似文献   

3.
针对向内发射同轴虚阴极振荡器进行了1维理论分析,给出了电流电压关系的数值解,估算了同轴漂移区空间电荷限制流及虚阴极位置;同时使用MAFIA程序进行了全3维PIC数值模拟研究,通过调节阴极电子发射区与阳极反射板之间距离进行了一系列计算,得到了圆波导中各传输模式频谱及功率。结果表明,尽管使用圆周对称的同轴结构,输出模式中TE11和TM01仍占主导地位,两种模式共同存在,相互竞争。在最佳情况下,当二极管电压为250 kV,电流为20 kA时,得到了微波输出总功率最高为740 MW,功率效率超过10%,主频为3.18 GHz,同时含有较强TE11和TM01模式成分的微波输出。  相似文献   

4.
提出了一种新型的径向三腔同轴虚阴极振荡器,并对其进行了理论分析和数值模拟。这种虚阴极振荡器采用径向三腔结构,通过改变束-波互作用区的电场分布来提高电子束与TM01模式的耦合效率,并通过采用准谐振腔的结构来进一步抑制模式竞争以获得较高的输出微波增益。同时采用能量同轴提取的方式进一步提高器件的功率和效率。粒子模拟结果表明,在二极管电压400 kV,束流50 kA的条件下,径向三腔同轴虚阴极振荡器在4.14 GHz处获得了平均功率约2.45 GW的微波输出,功率转换效率达到12%。输出微波模式纯度较高,频谱非常窄。  相似文献   

5.
向内发射同轴虚阴极振荡器理论分析与数值模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
 针对向内发射同轴虚阴极振荡器进行了1维理论分析,给出了电流电压关系的数值解,估算了同轴漂移区空间电荷限制流及虚阴极位置;同时使用MAFIA程序进行了全3维PIC数值模拟研究,通过调节阴极电子发射区与阳极反射板之间距离进行了一系列计算,得到了圆波导中各传输模式频谱及功率。结果表明,尽管使用圆周对称的同轴结构,输出模式中TE11和TM01仍占主导地位,两种模式共同存在,相互竞争。在最佳情况下,当二极管电压为250 kV,电流为20 kA时,得到了微波输出总功率最高为740 MW,功率效率超过10%,主频为3.18 GHz,同时含有较强TE11和TM01模式成分的微波输出。  相似文献   

6.
 提出了一种新型的径向三腔同轴虚阴极振荡器,并对其进行了理论分析和数值模拟。这种虚阴极振荡器采用径向三腔结构,通过改变束-波互作用区的电场分布来提高电子束与TM01模式的耦合效率,并通过采用准谐振腔的结构来进一步抑制模式竞争以获得较高的输出微波增益。同时采用能量同轴提取的方式进一步提高器件的功率和效率。粒子模拟结果表明,在二极管电压400 kV,束流50 kA的条件下,径向三腔同轴虚阴极振荡器在4.14 GHz处获得了平均功率约2.45 GW的微波输出,功率转换效率达到12%。输出微波模式纯度较高,频谱非常窄。  相似文献   

7.
结合低磁场返波管振荡器和虚阴极振荡器的优点,设计了一个具有较高效率的虚阴极振荡器,通过添加半反射腔,使虚阴极在由阳极箔、波导和半反射腔组成的准谐振腔内形成,实现器件的高效率、高功率运行。当电子能量和束流分别为480keV和23kA时,采用2.5维粒子模拟(PIC)程序模拟得到频率为3.7GHz、功率为2.6GW的微波输出,器件束波转换效率约为23%。  相似文献   

8.
结合低磁场返波管振荡器和虚阴极振荡器的优点,设计了一个具有较高效率的虚阴极振荡器,通过添加半反射腔,使虚阴极在由阳极箔、波导和半反射腔组成的准谐振腔内形成,实现器件的高效率、高功率运行。当电子能量和束流分别为480 keV和23 kA时,采用2.5维粒子模拟(PIC)程序模拟得到频率为3.7 GHz、功率为2.6 GW的微波输出,器件束波转换效率约为23%。  相似文献   

9.
提出一种高效率预调制型同轴虚阴极振荡器,进行了数值模拟研究。研究表明:径向束流预调制型同轴虚阴极振荡器利用在束-波互作用区加载金属圆环形成谐振腔,改变束-波互作用区的电场,对电子束进行调制。圆筒形金属形成的调制腔产生的电场既对电子束进行了调制,同时对微波频率进行了锁定,其谐振频率主要是由加载的金属圆筒的长度和两个圆筒之间的径向距离决定。经过优化设计,在600 kV,73 kA无外加引导磁场的条件下,预调制型同轴虚阴极振荡器获得了平均功率6 GW,频率为2.575 GHz的微波输出,效率达到13.94%。  相似文献   

10.
提出一种高效率预调制型同轴虚阴极振荡器,进行了数值模拟研究。研究表明:径向束流预调制型同轴虚阴极振荡器利用在束-波互作用区加载金属圆环形成谐振腔,改变束-波互作用区的电场,对电子束进行调制。圆筒形金属形成的调制腔产生的电场既对电子束进行了调制,同时对微波频率进行了锁定,其谐振频率主要是由加载的金属圆筒的长度和两个圆筒之间的径向距离决定。经过优化设计,在600 kV,73 kA无外加引导磁场的条件下,预调制型同轴虚阴极振荡器获得了平均功率6 GW,频率为2.575 GHz的微波输出,效率达到13.94%。  相似文献   

11.
 该新型双间隙虚阴极振荡器的互作用区为一带孔金属薄膜隔开的两个圆柱形谐振腔;器件采用侧向提取同轴输出的方法,具有输出效率高和输出模式纯的优点;第一阳极薄膜采用了局部薄膜结构。对互作用腔进行冷腔分析,计算得到互作用腔Ⅰ和Ⅱ的品质因子分别为6 960和71.8,共振频率为2.3 GHz。当电子束电压为515 kV、电流为10 kA时,通过参数优化,模拟得到周期平均峰值功率大于570 MW、频率约2.4 GHz的微波输出,效率达到11%。模拟还发现电子束的最佳阻抗值约为51.5 W;电子束的输入功率在较大范围内变化时,器件的输出效率保持大于10%;在一定的范围内,器件的输出效率随电子束密度的增加而增加。对器件中由于电子能量沉积而引起的阳极膜的温升进行了估算,得到膜的最高温度为434 K,远低于熔点933 K。  相似文献   

12.
一种新型的高功率高频率同轴渡越时间振荡器   总被引:3,自引:3,他引:0       下载免费PDF全文
 提出了一种高频率和高功率的渡越时间振荡器,并且对其进行了理论和数值研究。这种振荡器采用同轴结构,功率容量大,不需要外加引导磁场聚焦电子束,波束相互作用区短,保持了传统渡越时间振荡器在结构上的简单性和输出信号的稳定性;运用电压为225kV和电流为11kA的电子束进行模拟,在X波段获得了峰值功率为1.4GW,频率为8.335GHz的微波输出。  相似文献   

13.
该新型双间隙虚阴极振荡器的互作用区为一带孔金属薄膜隔开的两个圆柱形谐振腔;器件采用侧向提取同轴输出的方法,具有输出效率高和输出模式纯的优点;第一阳极薄膜采用了局部薄膜结构。对互作用腔进行冷腔分析,计算得到互作用腔Ⅰ和Ⅱ的品质因子分别为6 960和71.8,共振频率为2.3 GHz。当电子束电压为515 kV、电流为10 kA时,通过参数优化,模拟得到周期平均峰值功率大于570 MW、频率约2.4 GHz的微波输出,效率达到11%。模拟还发现电子束的最佳阻抗值约为51.5 W;电子束的输入功率在较大范围内变化时,器件的输出效率保持大于10%;在一定的范围内,器件的输出效率随电子束密度的增加而增加。对器件中由于电子能量沉积而引起的阳极膜的温升进行了估算,得到膜的最高温度为434 K,远低于熔点933 K。  相似文献   

14.
新型准光腔同轴虚阴极振荡器的研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 集合准光腔型虚阴极振荡器和同轴虚阴极振荡器的优点,设计了一种新型的准光腔同轴虚阴极振荡器。采用自由电磁振荡理论分析了3反射镜准光学谐振腔中的场分布,并用2.5维全电磁PIC程序对该器件进行了粒子模拟。在输入电压为600 kV,二极管电流为50 kA的条件下,得到主频为7.0 GHz,峰值功率超过6 GW的功率输出,其平均功率达2.5 GW,平均束波转换效率为8.3%。  相似文献   

15.
介绍了准光腔型虚阴极振荡器。利用光学谐振腔标量波动理论,分析了准光学谐振腔的腔场特性;并采用二维半全电磁PIC程序对器件进行了粒子模拟,得到了主频为7.0GHz、平均功率超过1.3GW、以准高斯模为主的微波输出,束波作用平均转换效率接近10%。  相似文献   

16.
集合准光腔型虚阴极振荡器和同轴虚阴极振荡器的优点,设计了一种新型的准光腔同轴虚阴极振荡器。采用自由电磁振荡理论分析了3反射镜准光学谐振腔中的场分布,并用2.5维全电磁PIC程序对该器件进行了粒子模拟。在输入电压为600 kV,二极管电流为50 kA的条件下,得到主频为7.0 GHz,峰值功率超过6 GW的功率输出,其平均功率达2.5 GW,平均束波转换效率为8.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号