首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential energy surface of He2Ne+ has been reinvestigated using a combination of ab initio and diatomics-in-molecule (DIM) calculations. In contrast to the reports of two recent studies the ion is found to have an asymmetric linear He-Ne-He structure, with no barrier to formation from the separated atoms on the ground-state surface. The He-Ne+ bond lengths at the potential minimum are 1.51 and 1.81 A, and the total bonding energy is 0.717 eV. Comparing the He2Ne+ energy to that of HeNe+, the bonding energy for the second helium atom is 0.06 eV, about 10% of that of the first He atom. The saddle point between the two equivalent minima is a symmetric structure, 0.0074 eV above the potential minimum. A symmetric geometry becomes the overall potential minimum if the 2s hole on the Ne is excluded from the reference states of a multireference configuration interaction calculation. A DIM potential was created for the HenNe+ family of ions. The DIM potential is consistent with the asymmetric He2Ne+ ion serving as a core; it predicts a slightly more asymmetric geometry than the ab initio results. Additional helium atoms form five-membered rings around the bonds of the core ion to fill the first shell and then add to the ends of the cluster. The asymmetric core ion and the highly compact structure help to account for the lack of apparent shell structure in the mass spectrometry of HenNe+ clusters. Finally, we recommend that the value De=0.63+/-0.04 eV be adopted for the ground state of HeNe+.  相似文献   

2.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   

3.
We report all-electron and pseudopotential calculations of the ground-state energies of the neutral Ne atom and the Ne(+) ion using the variational and diffusion quantum Monte Carlo (DMC) methods. We investigate different levels of Slater-Jastrow trial wave function: (i) using Hartree-Fock orbitals, (ii) using orbitals optimized within a Monte Carlo procedure in the presence of a Jastrow factor, and (iii) including backflow correlations in the wave function. Small reductions in the total energy are obtained by optimizing the orbitals, while more significant reductions are obtained by incorporating backflow correlations. We study the finite-time-step and fixed-node biases in the DMC energy and show that there is a strong tendency for these errors to cancel when the first ionization potential (IP) is calculated. DMC gives highly accurate values for the IP of Ne at all the levels of trial wave function that we have considered.  相似文献   

4.
We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.  相似文献   

5.
The ground-state energies and HF vibrational frequency shifts of Ar(n)HF clusters have been calculated on the nonadditive potential-energy surfaces (PESs) for n=2-7 and on the pairwise-additive PESs for the clusters with n=1-12, using the diffusion Monte Carlo (DMC) method. For n>3, the calculations have been performed for the lowest-energy isomer and several higher-lying isomers which are the closest in energy. They provide information about the isomer dependence of the HF redshift, and enable direct comparison with the experimental data recently obtained in helium nanodroplets. The agreement between theory and experiment is excellent, in particular, for the nonadditive DMC redshifts. The relative, incremental redshifts are reproduced accurately even at the lower level of theory, i.e., the DMC and quantum five-dimensional (rigid Ar(n)) calculations on the pairwise-additive PESs. The nonadditive interactions make a significant contribution to the frequency shift, on the order of 10%-12%, and have to be included in the PESs in order for the theory to yield accurate magnitude of the HF redshift. The energy gaps between the DMC ground states of the cluster isomers are very different from the energy separation of their respective minima on the PES, due to the considerable variations in the intermolecular zero-point energy of different Ar(n)HF isomers.  相似文献   

6.
An analytical potential energy surface for a rigid Rb? in the 3Σ(u)? state interacting with one helium atom based on accurate ab initio computations is proposed. This 2-dimensional potential is used, together with the pair approximation approach, to investigate Rb? attached to small helium clusters He(N) with N = 1-6, 12, and 20 by means of quantum Monte Carlo studies. The limit of large clusters is approximated by a flat helium surface. The relative orientation of the dialkali axis and the helium surface is found to be parallel. Dynamical investigations of the pendular and of the in-plane rotation of the rigid Rb? molecule on the surface are presented.  相似文献   

7.
We present a rigorous theoretical study of the solvation of (HCl)(2) and (HF)(2) by small ((4)He)(n) clusters, with n=1-14 and 30. Pairwise-additive potential-energy surfaces of He(n)(HX)(2) (X=Cl and F) clusters are constructed from highly accurate four-dimensional (rigid monomer) HX-HX and two-dimensional (rigid monomer) He-HX potentials and a one-dimensional He-He potential. The minimum-energy geometries of these clusters, for n=1-6 in the case of (HCl)(2) and n=1-5 for (HF)(2), correspond to the He atoms in a ring perpendicular to and bisecting the HX-HX axis. The quantum-mechanical ground-state energies and vibrationally averaged structures of He(n)(HCl)(2) (n=1-14 and 30) and He(n)(HF)(2) (n=1-10) clusters are calculated exactly using the diffusion Monte Carlo (DMC) method. In addition, the interchange-tunneling splittings of He(n)(HCl)(2) clusters with n=1-14 are determined using the fixed-node DMC approach, which was employed by us previously to calculate the tunneling splittings for He(n)(HF)(2) clusters, n=1-10 [A. Sarsa et al., Phys. Rev. Lett. 88, 123401 (2002)]. The vibrationally averaged structures of He(n)(HX)(2) clusters with n=1-6 for (HCl)(2) and n=1-5 for (HF)(2) have the helium density localized in an effectively one-dimensional ring, or doughnut, perpendicular to and at the midpoint of the HX-HX axis. The rigidity of the solvent ring varies with n and reaches its maximum for the cluster size at which the ring is filled, n=6 and n=5 for (HCl)(2) and (HF)(2), respectively. Once the equatorial ring is full, the helium density spreads along the HX-HX axis, eventually solvating the entire HX dimer. The interchange-tunneling splitting of He(n)(HCl)(2) clusters hardly varies at all over the cluster size range considered, n=1-14, and is virtually identical to that of the free HCl dimer. This absence of the solvent effect is in sharp contrast with our earlier results for He(n)(HF)(2) clusters, which show a approximately 30% reduction of the tunneling splitting for n=4. A tentative explanation for this difference is proposed. The implications of our results for the interchange-tunneling dynamics of (HCl)(2) in helium nanodroplets are discussed.  相似文献   

8.
Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(?) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(?)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(?)He(n) clusters. The structures obtained are however different with a He-Rb(?)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.  相似文献   

9.
Minimum-energy structures of the Rg(2)-N(2)O (Rg=He, Ne, Ar) clusters have been determined with ab initio MP2 optimization, whereas the minimum-energy structures of the Rg(n)-N(2)O clusters with n = 3-7 have been obtained with the pairwise additive potentials. Interaction energies and nonadditive three-body effects of the Rg(2)-N(2)O ternary complex have been calculated using supermolecule method at MP4 and CCSD(T) levels. It was found from the calculations that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The nonadditive three-body effects were found to be small for Rg(2)-N(2)O complexes. Our calculations also indicated that, for He(n)-N(2)O and Ne(n)-N(2)O clusters, the first six He and Ne atoms form the first solvation ring around the middle nitrogen of the N(2)O monomer, while for Ar(n)-N(2)O, the first five Ar atoms form the first solvation ring.  相似文献   

10.
The X(2)Σ(1/2)(+), A(2)Π(1∕2), A(2)Π(3∕2), and B(2)Σ(1/2)(+) potential energy curves and associated dipole matrix elements are computed for M + Ng at the spin-orbit multi-reference configuration interaction level, where M = K, Rb, Cs and Ng = He, Ne, Ar. Dissociation energies and equilibrium positions for all minima are identified and corresponding vibrational energy levels are computed. Difference potentials are used together with the quasistatic approximation to estimate the position of satellite peaks of collisionally broadened D2 lines. The comparison of potential energy curves for different alkali atom and noble gas atom combinations is facilitated by using the same level of theory for all nine M + Ng pairs.  相似文献   

11.
We present quantum dynamical calculations on the conformational changes of glycine in collisions with the He, Ne, and Ar rare-gas atoms. For two conformer interconversion processes (III-->I and IV-->I), we find that the probability of interconversion is dependent on several factors, including the energy of the collision, the angle at which the colliding atom approaches the glycine molecule, and the strength of the glycine-atom interaction. Furthermore, we show that attractive interactions between the colliding atom and the glycine molecule catalyze conformer interconversion at low collision energies. In previous infrared spectroscopy studies of glycine trapped in rare-gas matrices and helium clusters, conformer III has been consistently observed, but conformer IV has yet to be conclusively detected. Because of the calculated thermodynamic stability of conformer IV, its elusiveness has been attributed to the IV-->I conformer interconversion process. However, our calculations present little indication that IV-->I interconversion occurs more readily than III-->I interconversion. Although we cannot determine whether conformer IV interconverts during experimental Ne- and Ar-matrix depositions, our evidence suggests that the conformer should be present in helium droplets. Anharmonic vibrational frequency calculations illustrate that previous efforts to detect conformer IV may have been hindered by the overlap of its IR-absorption bands with those of other conformers. We propose that the redshifted symmetric -CH(2) stretch of conformer IV provides a means for its conclusive experimental detection.  相似文献   

12.
Translational energy spectra have been obtained for 6 keV C2+ ions resulting from single-electron capture by 6 keV C3+ ions in collision with He, Ne and Ar. Our data for He and Ne are in good agreement with previous measurements, while data for the Ar target have not appeared in the literature. The spectrum for C3+ in Ar is complex and appears to contain many strong spectral features which involve capture with excitation of the target product ion in Ar+.  相似文献   

13.
Ab initio quantum calculations have been carried out on the helium ionic trimer. The potential energy surface is accurately fitted, especially in the vicinity of the three equivalent minima. The spectrum of bound states for the zero angular momentum is computed and analyzed in detail. Energies and wave functions reveal several interesting features related to the fact that He3+ represents one of the few homonuclear ionic trimers that are linear in their ground vibrational state. At low energies, the triply degenerate eigenfunctions are localized at the potential minimum. With growing excitation energy, however, the wave functions exhibit stronger spatial delocalization.  相似文献   

14.
Summary Accurate new C6 dispersion energy coefficients, and their dependence on the diatom orientation and bond length, are calculated for molecular hydrogen interacting with an atom of H, Li, Be, He, Ne, Ar, Kr or Xe. They are generated from accurateab initio pseudo dipole oscillator strength distributions (DOSD) for H2, H, He and Be, and reliable semiempirical ones for Li, Ne, Ar, Kr and Xe. Compact power series expansions for the diatom bond-length dependence of these coefficients, suitable for incorporation into representations of full potential energy surfaces for these systems, are determined and assessed.  相似文献   

15.
Small clusters of rare-gas atoms are ideal test cases for studying how quantum delocalization affects both the thermodynamics and the structure of molecular scale systems. In this paper, we use a variational quantum hydrodynamic approach to examine the structure and dynamics of (Ne)n clusters, with n up to 100 atoms, at both T = 0 K and for temperatures spanning the solid-to-liquid transition in bulk Ne. Finite temperature contributions are introduced to the grand potential in the form of an "entropy" potential. One surprising result is the prediction of a negative heat capacity for very small clusters that we attribute to the nonadditive nature of the total free-energy for very small systems.  相似文献   

16.
The interaction-induced contribution to the NMR shielding constants in homonuclear A2 and heteronuclear AB (A,B=He,Ne,Ar) dimers is obtained ab initio by employing a coupled cluster singles and doubles with perturbative treatment of triples wave function model and extended correlation-consistent basis sets. The second virial coefficients entering the expansion of the property with the density are then computed in a fully quantum mechanical approach, for temperatures ranging from the limit of dissociation of the dimer to well above standard conditions. The results can be used to describe the density and temperature dependence of the shielding constants in binary mixtures of helium, neon, and argon. The predicted effects should be observable for the interaction of 21Ne with other rare gases.  相似文献   

17.
18.
The method developed by Hennecart and Masnou-Seeuws (1985) for the Ne*+He and Ne*+Ne systems is applied to the calculation of the molecular potential curves of the Ar*+He and Ar*+Ne systems that are correlated to the levels of the 3p 5 4s and 3p 5 4p configurations of the Ar atom. The computed potential curves and dynamical coupling matrix elements are next used in the framework of a two-state quantal calculation to determine the temperature variation of a few population transfer cross sections. A simple interpretation is proposed for Ar*+He and Ne*+He collisions using the Nikitin's exponential model, and it is shown that in many cases the cross sections can be predicted correctly by a two-state model.  相似文献   

19.
Xu M  Bacić Z  Hutson JM 《Faraday discussions》2001,(118):405-17; discussion 419-31
The size evolution of the equilibrium structures of open-shell ArnCH (X 2 pi) Van der Waals clusters is investigated for n = 1 to 15. We describe a method for combining pair potentials for Ar-CH and Ar-Ar interactions to obtain potential energy surfaces for ArnCH clusters. For each cluster size considered, the global and a few energetically close local minima are calculated using simulated annealing followed by a direct minimization scheme. Ar2CH is found to have an unusually stable planar structure, which persists as a motif in larger ArnCH clusters and has a strong effect on their optimal geometries. The lowest-energy isomers of ArnCH with n = 3 to 11 have all Ar atoms in a shell around CH. The only exception is Ar4CH, where the fully solvated isomer is 3 cm-1 higher in energy than the optimal isomer with CH bound to the surface of the Ar4 tetrahedron. For n = 7 to 11, the minimum-energy structure of ArnCH derives from the global minimum of the Arn + 1 cluster, by replacing the Ar atom at the bottom of the pentagonal bipyramid with CH. The lowest-energy structure of Ar12CH is that of the optimal icosahedral Ar13 cluster, with CH replacing one of the Ar atoms on the cluster surface. This structure supports the proposition based on the spectroscopic data, that for ArnCH clusters with about 10 to 50 Ar atoms CH resides on the surface of Arn.  相似文献   

20.
A simple scheme is described for introducing the correct cusps at nuclei into orbitals obtained from Gaussian basis set electronic structure calculations. The scheme is tested with all-electron variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods for the Ne atom, the H2 molecule, and 55 molecules from a standard benchmark set. It greatly reduces the variance of the local energy in all cases and slightly improves the variational energy. This scheme yields a general improvement in the efficiency of all-electron VMC and DMC calculations using Gaussian basis sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号