首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.  相似文献   

2.
We present a study of energy transfer in collisions of Ar with methane and perfluoromethane at hyperthermal energies (E(coll) = 4-10 eV). Quasiclassical trajectory calculations of Ar + CX(4) (X = H, F) collisions indicate that energy transfer from reagents' translation to internal modes of the alkane molecule is greatly enhanced by fluorination. The reasons for the enhancement of energy transfer upon fluorination are shown to emerge from a decrease in the hydrocarbon vibrational frequencies of the CX(4) molecule with increasing the mass of the X atom, and to an increase of the steepness of the Ar-CX(4) intermolecular potential. At high collision energies, we find that the cross section of Ar + CF(4) collisions in which the amount of energy transfer is larger than needed to break a C-F bond is at least 1 order of magnitude larger than the cross sections of Ar + CH(4) collisions producing CH(4) with energy above the dissociation limit. In addition, collision-induced dissociation is detected in short time scales in the case of the fluorinated species at E(coll) = 10 eV. These results suggest that the cross section for degradation of fluorinated hydrocarbon polymers under the action of nonreactive hyperthermal gas-phase species might be significantly larger than that of hydrogenated hydrocarbon polymers. We also illustrate a practical way to derive intramolecular potential energy surfaces for bond-breaking collisions by improving semiempirical Hamiltonians based on grids of high-quality ab initio calculations.  相似文献   

3.
This study focuses upon the Lewis acid reactivity of XeF(+) with various bases in the gas phase and the determination of the bond dissociation energy of XeF(+). The bond dissociation energy of XeF(+) has been measured by using energy-resolved collision-induced dissociation with neon, argon, and xenon target gases. Experiments with neon target yield a 298 K bond dissociation enthalpy of 2.81 +/- 0.09 eV, and those with argon target give a similar value at 2.83 +/- 0.12 eV. When using a xenon target, a significantly lower value of 1.95 +/- 0.16 eV was observed, which corresponds closely with previous measurements and theoretical predictions. It is proposed that the lighter target gases give inefficient excitation of the XeF(+) vibration leading to dissociation at energies higher than the BDE. Novel xenon-base adducts have been prepared in a flowing afterglow mass spectrometer by termolecular addition to XeF(+) and by reaction of base with XeF(+)(H(2)O). New species have been characterized qualitatively by CID, and it is found that the products formed reflect the relative ionization energies of the fragments. Among the new xenon-containing species that have been prepared are the first examples of xenon carbonyls.  相似文献   

4.
5.
Time-dependent wave packet quantum scattering (TWQS) calculations are presented for HD(+) (v = 0 - 3;j(0)=1) + He collisions in the center-of-mass collision energy (E(T)) range of 0.0-2.0 eV. The present TWQS approach accounts for Coriolis coupling and uses the ab initio potential energy surface of Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. For a fixed total angular momentum J, the energy dependence of reaction probabilities exhibits quantum resonance structure. The resonances are more pronounced for low J values and for the HeH(+) + D channel than for the HeD(+) + H channel and are particularly prominent near threshold. The quantum effects are no longer discernable in the integral cross sections, which compare closely to quasiclassical trajectory calculations conducted on the same potential energy surface. The integral cross sections also compare well to recent state-selected experimental values over the same reactant and translational energy range. Classical impulsive dynamics and steric arguments can account for the significant isotope effect in favor of the deuteron transfer channel observed for HD(+)(v<3) and low translational energies. At higher reactant energies, angular momentum constraints favor the proton-transfer channel, and isotopic differences in the integral cross sections are no longer significant. The integral cross sections as well as the J dependence of partial cross sections exhibit a significant alignment effect in favor of collisions with the HD(+) rotational angular momentum vector perpendicular to the Jacobi R coordinate. This effect is most pronounced for the proton-transfer channel at low vibrational and translational energies.  相似文献   

6.
The collision-induced dissociation of VO(+) by Xe has been studied by the use of classical dynamics procedures on London-Eyring-Polanyi-Sato potential-energy surfaces in the collision energy range of 5.0-30 eV. The dissociation threshold behavior and the dependence of reaction cross sections on the collision energy closely follow the observed data with the threshold energy of 6.00 eV. The principal reaction pathway is VO(+) + Xe --> V(+)+ O + Xe and the minor pathway is VO(+) + Xe--> VXe(+) + O. At higher collision energies (E > 8.0 eV), the former reaction preferentially occurs near the O-V(+)...Xe collinear and perpendicular alignments, but the latter only occurs near the perpendicular alignment. At lower energies close to the threshold, the reactions are found to occur near the collinear configuration. No reaction occurs in the collinear alignment V(+)-O...Xe. The high and low energy-transfer efficiencies of the collinear alignments O-V(+)...Xe and V(+)-O...Xe are attributed to the effects of mass distribution. The activation of the VO(+) bond toward the dissociation threshold occurs through a translation-to-vibration energy transfer in a strong collision on a time scale of about 50 fs.  相似文献   

7.
Threshold collision-induced dissociation of M(+)(AAA) with Xe is studied using guided ion beam tandem mass spectrometry. M(+) include the alkali metal ions Na(+) and K(+). The three aromatic amino acids are examined, AAA = phenylalanine, tyrosine, or tryptophan. In all cases, endothermic loss of the intact aromatic amino acid is the dominant reaction pathway. The threshold regions of the cross sections are interpreted to extract 0 and 298 K bond dissociation energies for the M(+)-AAA complexes after accounting for the effects of multiple ion-neutral collisions, internal energy of the reactant ions, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures of the neutral aromatic amino acids and their complexes to Na(+) and K(+) and to provide molecular constants required for the thermochemical analysis of the experimental data. Theoretical bond dissociation energies are determined from single-point energy calculations at the B3LYP/6-311++G(3df,3pd) level using the B3LYP/6-31G geometries. Good agreement between theory and experiment is found for all systems. The present results are compared to earlier studies of these systems performed via kinetic and equilibrium methods. The present results are also compared to the analogous Na(+) and K(+) complexes to glycine, benzene, phenol, and indole to elucidate the relative contributions that each of the functional components of these aromatic amino acids make to the overall binding in these complexes.  相似文献   

8.
Experimental differential cross sections are presented for ion-pair formation in collisions between K and I2, IBr, Br2, ICl, Cl2. In this sequence the vibrational frequency of the halogen molecule is increased gradually from one system to the next. Therefore this is a suitable set of cros sections for analysing the influence of the rate at which the halogen bond stretches after transition to the ionic state. The experimental data are compared with trajectory calculations on diabatic and on adiabatic potential energy surfaces. The results of the two types of calculations differ significantly; the adiabatic model gives the better agreement with experiment. The essential difference between the two models is that in the diabatic model stretching of the halogen bond starts only when the crossing seam Rc between the ionic and covalent configurations is reached, while in adiabatic scattering, pre-stretching of the halogen bond occurs as the alkali atom approaches the crossing seam. As a result of pre-stretching the electron affinity is increased, which in turn affects the endoergicity and the total and differential cross sections for ion-pair formation. At energie below the threshold for ion-pair formation, the cross section for reactive scattering is also affected.  相似文献   

9.
The interactions of cesium cations with five amino acids (AA) including glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), and cysteine (Cys) are examined in detail. Experimentally, the bond dissociation energies (BDEs) are determined using threshold collision-induced dissociation of the Cs(+)(AA) complexes with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Bond dissociation energies (0 K) of 93.3 ± 2.5, 107.9 ± 4.6, 102.3 ± 4.1, 105.4 ± 4.3, and 96.8 ± 4.2 kJ/mol are determined for complexes of Cs(+) with Gly, Pro, Ser, Thr, and Cys, respectively. Quantum chemical calculations are conducted at the B3LYP, B3P86, MP2(full), and M06 levels of theory with geometries and zero-point energies calculated at the B3LYP level using both HW*/6-311+G(2d,2p) and def2-TZVPPD basis sets. Results obtained using the former basis sets are systematically low compared to the experimental bond energies, whereas the latter basis sets show good agreement. For Cs(+)(Gly), theory predicts the ground-state conformer has the cesium cation binding to the carbonyl group of the carboxylic acid. For Cs(+)(Pro), the secondary nitrogen accepts the carboxylic acid hydrogen to form the zwitterionic structure, and the metal cation binds to both oxygens. Cs(+)(Ser), Cs(+)(Thr), and Cs(+)(Cys) are found to have tridentate binding at the MP2(full) level, whereas the density functional approaches slightly prefer bidentate binding of Cs(+) at the carboxylic acid moiety. Comparison of these results to those for the smaller alkali cations provides insight into the trends in binding affinities and structures associated with metal cation variations.  相似文献   

10.
We present global potential energy surfaces for the three lowest triplet states in O(3P)+H2O(X1A1) collisions and present results of classical dynamics calculations on the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction using these surfaces. The surfaces are spline-based fits of approximately 20,000 fixed geometry ab initio calculations at the complete-active-space self-consistent field+second-order perturbation theory (CASSCF+MP2) level with a O(4s3p2d1f)/H(3s2p) one electron basis set. Computed rate constants compare well to measurements in the 1000-2500 K range using these surfaces. We also compute the total, rovibrationally resolved, and differential angular cross sections at fixed collision velocities from near threshold at approximately 4 km s(-1) (16.9 kcal mol(-1) collision energy) to 11 km s(-1) (122.5 kcal mol(-1) collision energy), and we compare these computed cross sections to available space-based and laboratory data. A major finding of the present work is that above approximately 40 kcal mol(-1) collision energy rovibrationally excited OH(X2pi) products are a significant and perhaps dominant contributor to the observed 1-5 micro spectral emission from O(3P)+H2O(X1A1) collisions. Another important result is that OH(X2pi) products are formed in two distinct rovibrational distributions. The "active" OH products are formed with the reagent O atom, and their rovibrational distributions are extremely hot. The remaining "spectator" OH is relatively rovibrationally cold. For the active OH, rotational energy is dominant at all collision velocities, but the opposite holds for the spectator OH. Summed over both OH products, below approximately 50 kcal mol(-1) collision energy, vibration dominates the OH internal energy, and above approximately 50 kcal mol(-1) rotation is greater than vibrational energy. As the collision energy increases, energy is diverted from vibration to mostly translational energy. We note that the present fitted surfaces can also be used to investigate direct collisional excitation of H2O(X1A1) by O(3P) and also OH(X2pi)+OH(X2pi) collisions.  相似文献   

11.
The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation.  相似文献   

12.
The absolute integral cross sections for the formation of HeH+ and HeD+ from the collisions of HD+(v,j=1)+He have been examined over a broad range of vibrational energy levels v=0-13 at the center-of-mass collision energies (ET) of 0.6 and 1.4 eV using the vacuum ultraviolet (VUV) pulsed field ionization photoelectron secondary ion coincidence method. The ET dependencies of the integral cross sections for products HeH+ and HeD+ from HD+(v=0-4)+He collisions in the ET range of 0-3 eV have also been measured using the VUV photoionization guided ion beam mass spectrometric technique, in which vibrationally selected HD+(v) reactant ions were prepared via excitation of selected autoionization resonances of HD. At low total energies, a pronounced isotope effect is observed in absolute integral cross sections for the HeH++D and HeD++H channels with significant favoring of the deuteron transfer channel. As v is increased in the range of v=0-9, the integral cross sections of the HeH++D channel are found to approach those of HeD++H. The observed velocity distributions of products HeD+ and HeH+ are consistent with an impulsive or spectator-stripping mechanism. Detailed quasiclassical trajectory (QCT) calculations are also presented for HD+(v,j=1)+He collisions at the same energies of the experiment. The QCT calculations were performed on the most accurate ab initio potential energy surface available. If the zero-point energy of the reaction products is taken into account, the QCT cross sections for products HeH+ and HeD+ from HD+(v)+He are found to be significantly lower than the experimental results at ET values near the reaction thresholds. The agreement between the experimental and QCT cross sections improves with translational energy. Except for prethreshold reactivity, QCT calculations ignoring the zero-point energy in the products are generally in good agreement with experimental absolute cross sections. The experimental HeH+/HeD+ branching ratios for the HD+(v=0-9)+He collisions are generally consistent with QCT predictions. The observed isotope effects can be rationalized on the basis of differences in thermochemical thresholds and angular momentum conservation constraints.  相似文献   

13.
Absolute bond dissociation energies of serine (Ser) and threonine (Thr) to alkali metal cations are determined experimentally by threshold collision-induced dissociation of M+AA complexes, where M+=Li+, Na+, and K+ and AA=Ser and Thr, with xenon in a guided ion beam tandem mass spectrometer. Experimental results show that the binding energies of both amino acids to the alkali metal cations are very similar to one another and follow the order of Li+>Na+>K+. Quantum chemical calculations at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level show good agreement with the experimental bond energies. Theoretical calculations show that all M+AA complexes have charge-solvated structures (nonzwitterionic) with [CO, N, O] tridentate coordination.  相似文献   

14.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

15.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

16.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   

17.
In a previous paper [L. Sun, P. de Sainte Claire, O. Meroueh, and W. L Hase, J. Chem. Phys. 114, 535 (2001)], a classical trajectory simulation was reported of CH(4) desorption from Ni{111} by Ar-atom collisions. At an incident angle theta(i) of 60 degrees (with respect to the surface normal), the calculated collision-induced desorption (CID) cross sections are in excellent agreement with experiment. However, for smaller incident angles the calculated cross sections are larger than the experimental values and for normal collisions, theta(i)=0 degrees , the calculated cross sections are approximately a factor of 2 larger. This trajectory study used an analytic function for the Ar+Ni(s) intermolecular potential which gives an Ar-Ni{111} potential energy minimum which is an order of magnitude too deep. In the work reported here, the previous trajectory study is repeated with an Ar+Ni(s) analytic intermolecular potential which gives an accurate Ar-Ni{111} potential energy minimum and also has a different surface corrugation than the previous potential. Though there are significant differences between the two Ar+Ni(s) analytic potentials, they have no important effects on the CID dynamics and the cross sections reported here are nearly identical to the previous values. Zero-point energy motions of the surface and the CH(4)-Ni(s) intermolecular modes are considered in the simulation and they are found to have a negligible effect on the CID cross sections. Calculations of the intermolecular potential between CH(4) and a Ni atom, at various levels of theory, suggest that there are substantial approximations in the ab initio calculation used to develop the CH(4)+Ni{111} potential. The implication is that the differences between the trajectory and experimental CID cross sections may arise from an inaccurate CH(4)+Ni{111} potential used in the trajectory simulation.  相似文献   

18.
Electron transfer collisions of trapped doubly charged fullerene anions C76(2-), C(78)2-, and C84(2-) with SF6 are studied in a Fourier transform ion cyclotron resonance mass spectrometer at center-of-mass collisional energies ranging from thermal energy to 77 eV. Collision energy dependencies manifest threshold energies for (nominally exoergic) single electron transfer onto SF6 of 1.46+/-0.3 eV, 1.56+/-0.3 eV, and 1.63+/-0.3 eV for C(76)2-, C78(2-), and C(84)2-, respectively. Kinetics studies reveal charge-transfer cross sections of up to 430+/-200 A2 for C84(2-) at a collision energy of 77 eV. The mechanism and the energetics are discussed in terms of classical electrostatic model calculations. Additionally, we rationalize the collision energy dependencies of the charge-transfer cross sections using the two-state Landau-Zener formalism to describe the associated resonant electron tunneling probability.  相似文献   

19.
Some applications of collision dynamics in the field of quadrupole mass spectrometry are presented. Previous data on the collision induced dissociation of ions in triple quadrupole mass spectrometers is reviewed. A new method to calculate the internal energy distribution of activated ions directly from the increase in the cross section for dissociation with center of mass energy is presented. This method, although approximate, demonstrates explicitly the high efficiency of transfer of translational to internal energy of organic ions. It is argued that at eV center of mass energies, collisions between protein ions and neutrals such as Ar are expected to be highly inelastic. The discovery and application of collisional cooling in radio frequency quadrupoles is reviewed. Some previously unpresented data on fragment ion energies in triple quadrupole tandem mass spectrometry are shown that demonstrate directly the loss of kinetic energy of fragment ions in the cooling process. The development of the energy loss method to measure collision cross sections of protein ions in triple quadrupole instruments is reviewed along with a new discussion of the effects of inelastic collisions in these experiments and related ion mobility experiments.  相似文献   

20.
The reaction of Cu+ with dimethoxyethane (DXE) is studied using kinetic-energy dependent guided ion beam mass spectrometry. The bimolecular reaction forms an associative Cu(+)(DXE) complex that is long-lived and dissociates into several competitive channels: C4H9O2(+)+CuH, Cu(+)(C3H6O)+CH3OH, back to reactants, and other minor channels. The kinetic-energy dependences of the cross sections for the three largest product channels are interpreted with several different models (including rigorous phase space theory) to yield 0 K bond energies after accounting for the effects of multiple ion-molecule collisions, internal energy of the reactant ions, Doppler broadening, and dissociation lifetimes. These values are compared with bond energies obtained from collision-induced dissociation (CID) studies of the Cu(+)(DXE) complex and found to be self-consistent. Although all models provide reasonable thermochemistry, phase space theory reproduces the details of the cross sections most accurately. We also examine the dynamics of this reaction using time-of-flight methods and a retarding potential analysis. This provides additional insight into the unimolecular decay of the long-lived Cu(+)(DXE) association complex. Comparison of results from this study with those from the complementary CID study, thus forming the same energized Cu(+)(DXE) complex in two distinct ways, allows an assessment of the models used to interpret CID thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号