首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in mesoporous molecular sieve SBA-15 was studied by using cyclic voltammetry and in situ FTIR spectroscopy. Cyclic voltammetric studies revealed that the Pt nanoparticles confined in SBA-15 exhibit a high activity in the presence of hydrated phase consisting of SiO2 in the SBA-15. In situ FTIR spectroscopy results discovered that IR absorption of CO adsorbed on Pt nanoparticles confined in SBA-15 has been enhanced 11-fold, and the full-width at half-maximum of the CO band is significantly increased, in comparison with IR feature of CO adsorbed on a bulk Pt electrode. The linearly adsorbed CO species is the only intermediate derived from dissociative adsorption of methanol, which is more readily oxidized to form CO2 in the aid of the active oxide in SBA-15.This paper is dedicated to Professor G. Horanyi on the occasion of his 70th birthday and in recognition of his outstanding contribution to electrochemistry  相似文献   

2.
甲醇在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:8,自引:0,他引:8  
运用电化学方法评价了电化学阴极还原-阳极氧化两步法制得的以钛为基体的铂修饰的钛氧化物(Pt-TiOx/Ti)电极对甲醇电催化氧化的性能,结果表明,制得的修饰电极对甲醇氧化呈现了很高的电催化活性和好的稳定性.通过X光电子能谱(XPS)、扫描隧道显微镜(STM)和现场傅立叶变换红外(FTIR)反射光谱等技术,发现修饰电极对甲醇氧化具有高的电催化性能,可归属于纳米级Pt粒子在TiOx中的高度分散及由于Pt和TiOx的相互作用,使电极表面对甲醇氧化中间产物CO的吸附量大大降低.  相似文献   

3.
In situ transmission difference FTIR spectroscopy method was introduced for studying the anodic oxidation of methanol in acid aqueous solution. A minigrid Pt optically transparent thin layer electrode was used as working electrode. This method has the ability to clarify the identity of species involved in the oxidation process both in solution and adsorbed at the surface of electrode. From the results of in situ transmission difference FTIR spectroscopy measurement it was found that HCHO, HCOOH, HCOOCH3 and CH2(OCH3)2 could be formed in the oxidation process of methanol. The final product was CO2. The adsorbed poisonous intermediate CO was detected. It was formed at near 0.6 V and became significant at 0.9 V, where the oxidation current was inhibited. The in situ transmission difference FTIR spectroscopy method is a very convenient, relative simplicity and efficient method for investigating the electrochemical process, and could be as a good candidate for further application.  相似文献   

4.
王红森 《化学学报》2002,60(4):606-611
利用微分电化学质谱(DEMS)研究了Mo修饰的Pt电极上CO、甲醛和甲醇的电催 化氧化,证实了Mo(IV)是催化活性样品,而且它只对弱吸附CO的氧化起催化作用, 对强吸附CO的氧化没有催化活性。在低于0.4 V的电位下,吸附在Pt电极上的Mo结 甲醇和甲醛的催化氧化是通过弱吸附CO的氧化路径进行的。  相似文献   

5.
通过循环伏安扫描法制备了PMo12修饰Pt/Pt电极,并研究了该修饰电极在硫酸溶液中的电化学行为。研究结果表明:虽然磷钼酸具有较大的分子尺寸,但在Pt/Pt电极上仍能发生吸附作用,并且由于PMo12在电极上的吸附,降低了Pt/Pt电极上氢区和氧区的荷电量,另外在0.02V左右还观察到磷钼酸的氧化-还原峰。通过稳态极化曲线和循环伏安曲线研究了PMo12修饰Pt/Pt电极对甲醇氧化的电催化作用。测试结果表明:PMo12修饰铂基电极不但对甲醇的电氧化具有较高的活性,而且还有一定的抗CO中毒性。该修饰电极还具有较高的稳定性。  相似文献   

6.
采用电位置换反应以及化学还原法制备了单分散PtNi 纳米粒子,循环伏安结果显示该纳米粒子在0.1mol·L-1硫酸介质中对CO的氧化表现出比本体Pt 电极更好的电催化活性. 以CO为探针分子,采用电化学原位红外光谱研究了PtNi 纳米粒子上的特殊红外光学性能. 结果表明,PtNi 纳米粒子无论是在玻碳电极还是在金电极上,均表现出对称的双极谱峰,同时给出很强的增强效应. 论文研究结果有助于进一步了解低维纳米材料特殊红外性能的本质.  相似文献   

7.
The adsorption of iodine and iodide anions on a Pt/Pt electrode (0.5 M H2SO4 as a supporting solution) is compared using potentiodynamic and galvanostatic charging curves, transients of the current and open-circuit potential (OCP), and analytical measurements. Variations in the charge and OCP during the adsorption obey relationships derived for strong adsorption of neutral species and ions on a hydrogen electrode with the formation of irreversibly adsorbed atoms. The main product of the I2 and I chemisorption in acid solutions is adsorbed iodine atoms. However, adsorption of iodine occurs in noticeable amounts and above a monolayer in the form of species that undergo electrodesorption during a cathodic polarization to potentials of the beginning of hydrogen adsorption. In the presence of a monolayer of adsorbed iodine atoms, potential of the zero total charge of a Pt/Pt electrode is in the oxygen adsorption region.  相似文献   

8.
The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO3^2- and HCO3^- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.  相似文献   

9.
Spontaneous modification of polycrystalline Pt by irreversibly adsorbed bismuth was performed in BiCl3 solution in concentrated hydrochloric acid under open-circuit conditions. After spontaneous modification, followed by extensive rinsing with water and drying, the surface was characterized using X-ray photoelectron spectroscopy and electrochemistry. Bi-oxy(chloride), oxide species, and metallic Bi were found at a submonolayer coverage on the Pt surface after spontaneous modification. The electrochemical response of Bi-modified polycrystalline Pt electrode in sulfuric acid solution exhibits a complex multi-peak feature, which is resulting in about constant redox charge (Bi species coverage) in the potential region from 0 to 0.9 V (vs. a standard hydrogen electrode). The spontaneously Bi-modified Pt catalyst in model studies exhibits a superior activity towards formic acid oxidation at fuel cell anode relevant potentials. The catalytic effect of bismuth oxy-species is explained in terms of both inhibition of COad formation and oxidation of COad in reaction with Bi-oxy-species.  相似文献   

10.
The oxidation mechanisms of CO to CO2 on graphene‐supported Pt and Pt‐Al alloy clusters are elucidated by reactive dynamical simulations. The general mechanism evidenced is a Langmuir–Hinshelwood (LH) pathway in which O2 is adsorbed on the cluster prior to the CO oxidation. The adsorbed O2 dissociates into two atomic oxygen atoms thus promoting the CO oxidation. Auxiliary simulations on alloy clusters in which other metals (Al, Co, Cr, Cu, Fe, Ni) replace a Pt atom have pointed to the aluminum doped cluster as a special case. In the nanoalloy, the reaction mechanism for CO oxidation is still a LH pathway with an activation barrier sufficiently low to be overcome at room temperature, thus preserving the catalyst efficiency. This provides a generalizable strategy for the design of efficient, yet sustainable, Pt‐based catalysts at reduced cost.  相似文献   

11.
Electrochemical measurements were performed to characterize the kinetics of adsorbed CO oxidation on the surface of the stepped Pt(s)-[4(111)x(100)][triple bond, length half m-dash]Pt(335) single crystal electrode. For CO adsorbed to full coverage at 0.1 V (versus the reversible hydrogen electrode, RHE) in 0.5 M H(2)SO(4) at ambient temperature (23 degrees C), oxidation of the layer gave 7.6 x 10(14) +/- 0.3 CO/cm(2) as the saturation CO coverage, just below the average value reported for CO on Pt(335) in ultra high vacuum (8.3 x 10(14) +/- 0.6 CO/cm(2)). In potential step measurements carried out between 0.75 and 0.9 V, the peak region in the current-time transient was consistent with the surface reaction between adsorbed CO and adsorbed oxide as rate limiting. Plotting the log of the rate constant for the surface reaction versus potential gave a Tafel slope of 79 mV per decade, consistent with responses for CO electrochemical oxidation on structurally related stepped Pt electrodes. For CO coverages below saturation, current-time transients were more stable in 0.05 M H(2)SO(4) than in the higher concentration electrolyte. Numerically solving the rate equations to the Langmuir-Hinshelwood model of adsorbed CO electrochemical oxidation reproduced the main features in current-time transients measured at 0.7 V in 0.05 M H(2)SO(4) for sub-saturation CO coverages. The results provide new insights into CO oxidation on Pt at sub-saturation coverage and confirm that anions play a role in CO surface chemistry.  相似文献   

12.
The competition between pathways that lead to adsorbed CO and CO2 during the electrochemical oxidation of 1.0 M methanol in 0.1 M HClO4 on two bulk Pt–Ru alloys (10 at.% Ru (XRu≈0.1) and 90 at.% Ru (XRu≈0.9)) was investigated for temperatures in the range of 25–80°C. On the high Ru content alloy studied (XRu≈0.9), the dissociative chemisorption of methanol was inhibited below 70°C; the faradaic current for methanol oxidation was low, and only small quantities of adsorbed CO and CO2 were detected with infrared spectroscopy between 0.2–0.8 V (vs. RHE). At 80°C, strong infrared bands from CO2 and adsorbed, atop coordinated CO were observed over the potential ranges of 0.4–0.8 V and 0.2–0.8 V, respectively. The infrared measurements are consistent with the observation that bulk, high Ru content alloy electrodes appear passivated toward methanol oxidation below 70°C. On the low Ru content alloy studied (XRu≈0.1), the methanol surface chemistry was similar to that of pure, polycrystalline Pt, but the electrode was more poison resistant than Pt. For both alloys, the persistence of strong adsorbed CO bands and rapid CO2 production between 0.4–0.8 V suggests CO functions as a reactive species with high steady-state coverages at these potentials.  相似文献   

13.
The electrochemical behavior of irreversibly adsorbed antimony on a Pt(110) electrode (Pt(110)/Sb) with various coverages was studied using cyclic voltammetry. The kinetics of HCOOH oxidation via reactive intermediates on Pt(110)/Sb were investigated quantitatively by employing the potential step technique and in situ FTIR spectroscopy. The results demonstrated that Sb adatoms were stable on Pt(110) when the electrode potential was below 0.45 V (SCE). It has been revealed that the dissociative adsorption of formic acid can be inhibited by the presence of Sbad on the Pt(110) surface. The electrocatalytic effects of Sbad towards HCOOH oxidation consist in a negative shift of the oxidation potential (about 350 mV) and the enhancement of the oxidation current. Based on the data processing method of integration transform developed in our previous papers, the kinetics of HCOOH oxidation on Pt(110)/Sb electrodes of different θSb have been investigated quantitatively, and both the rate constant kf and the transfer coefficient β were determined and reported.  相似文献   

14.
An aluminum electrode modified with gold atoms was introduced as a novel electrode. Gold atoms were deposited both chemically and electrochemically onto the aluminum electrode to make an aluminum/gold (Al/Au) modified electrode (ME). The experimental results showed that the Al/Au modified electrode prepared by chemical deposition, exhibits much more current than the electrochemical deposition method. The electrochemical behavior of the Al/Au modified electrode was studied by cyclic voltammometry. This modified electrode showed two pairs of peaks, a1c1 and a2c2, with surface‐confined characteristics in a 0.5 M phosphate buffer. The dependence of Epa of the second peak (a2c2) on pH shows a Nernestian behavior with a slope of 55 mV per unit pH. The effect of different supporting electrolytes, solution's pH and different scan rates on electrochemical behavior of Al/Au modified electrode was studied. Au deposited electrochemically on a Pt electrode (Pt/Au) was also used as another modified electrode. A comparative study of electrochemical behavior of bare Al, Pt/Au and Al/Au modified electrodes showed that both Pt/Au and Al/Au electrodes have the ability of electrocatalytic oxidation of S2O32?, but the electrocatalytic oxidation on the latter was better than the former. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry and chronoamperometry techniques. The average value of the rate constant for the catalytic reaction and the diffusion coefficient were evaluated by means of chronoamperometry technique.  相似文献   

15.
The catalytic oxidation of glucose on Pt electrodes modified by adsorbed metals was studied in 1 M HClO4 by linear sweep voltammetry. The adsorbed metals (denoted as Mad, such as Biad and Pbad) formed on Pt in the potential region more positive than the reversible potential of an M=+/Mo couple, lead to a marked increase in the anodic c?urrent of glucose by about one order of magnitude. The catalytic activity depends on the surface coverage by the Mad. The strongly adsorbed species of lactone type, which are responsible for blocking the successive oxidation, are formed on the electrode surface in the anodic processes of glucose on a bare Pt electrode. The formation of such poisonous species is accelerated in the presence of adsorbed hydrogen on Pt. The effects of Mad were discussed on the basis that Mad plays its major role on the Pt electrode surface in removal of the adsorbed hydrogen which initiates the formation of the poisonous species.  相似文献   

16.
The electrocatalytic activity of a spontaneously tin-modified Pt catalyst, fabricated through a simple dip-coating method under open-circuit conditions and characterized using surface analysis methods, was studied in electrooxidation reactions of a preadsorbed CO monolayer and continuous oxidation of methanol, formic acid, and formaldehyde in the potentiodynamic and potentiostatic modes. The catalytic activity of the tin-modified Pt surface is compared with that of a polycrystalline Pt electrode. Spontaneously Sn-modified Pt catalyst shows a superior activity toward adsorbed CO oxidation and thus can be promising for PEFC applications. The methanol oxidation rate is not enhanced on the Sn-modified Pt surface, compared to the Pt electrode. Formic acid oxidation is enhanced in the low potential region on the Sn-modified surface, compared to the Pt electrode. The formaldehyde oxidation rate is dramatically increased by modifying tin species at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the pure Pt electrode. The results are discussed in terms of poisoning CO intermediate formation resulting from dehydrogenation of organic molecules on Pt sites, and oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

17.
Electrochemical voltammetric curves on Ru and Pt blacks of a different surface area were measured in potential intervals 0.05–1.05 V in pure 0.5 M H2SO4 and after CO adsorption. It was proved that after the CO adsorption, the outset of ruthenium oxidation is shifted by about 150 mV towards the positive potentials, e.g. to the region of oxidation of adsorbed CO. This fact made possible the determination of a double-layer charging current of Ru electrodes and, subsequently, also the determination of the amount of adsorbed hydrogen on the Ru surface. An evaluation of the amount of CO and hydrogen adsorption showed that the ratio of adsorbed CO:H on the Pt surface was about 1:1, while on Ru electrodes this ratio was around twice as large. The amount of hydrogen adsorbed on Ru blacks depends on the preliminary preparation of the electrodes. The CO adsorption could also be employed in the determination of a charging current of electrode double-layers during voltammetric oxidation of adsorbed hydrogen on ruthenium supported on Al2O3, SiO2, or TiO2 carriers. However, a similar determination of hydrogen adsorbed on the tin-modified Ru catalysts is not very reliable.  相似文献   

18.
The electrochemical processes of irreversibly adsorbed antimony (Sbad) on Au electrode were investigated by cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM). CV data showed that Sbad on Au electrode yielded oxidation and reduction features at about 0.15 V (vs saturated calomel electrode, SCE). EQCM data indicated that Sbad species were stable on Au electrode in the potential region from −0.25 to 0.18 V (vs SCE); the adsorption of Sb inhibited the adsorption of water and anion on Au electrode at low electrode potentials. Sb2O3 species was suggested to form on the Au electrode at 0.18 V. At a potential higher than 0.20 V the Sb2O3 species could be further oxidized to Sb(V) oxidation state and then desorbed from Au electrode.  相似文献   

19.
The role of the oxidation state of a platinum polycrystalline surface in the electrocatalytic oxidation of C1 to C4 primary alcohols has been studied by using electrochemical techniques, in situ FTIR spectroscopy and X-ray photoelectron spectroscopy. The results revealed that the oxidation state of the Pt surface plays a key role in the oxidation of primary alcohols, and demonstrated that the oxidation of C1 to C4 primary alcohols on a Pt electrode is controlled by the formation of surface oxides on the Pt electrode at different potentials. It was found that the dependence of the reaction process on the oxidation states of the platinum surface yielded similar features in the cyclic voltammogram for oxidation of different primary alcohols at a Pt electrode. According to the effects in the oxidation of primary alcohols, the surface oxides of platinum may be classified as active and poison species. The Pt surface oxides of higher oxidation states (Pt(OH)3 and PtO2) formed at potentials above 1.0 V (SCE) were identified as poison species, while other lower oxidation states of Pt surface oxides such as PtOH, Pt(OH)2 and PtO may be identified as the possible active species for primary alcohol oxidation.  相似文献   

20.
Infrared spectra in the bond-stretching, ν CO, region have been measured for CO adsorbed on an impregnated Pt/SiO2 catalyst (16% Pt) with the aim of characterizing the adsorption sites present. This catalyst has previously been widely used for the study of the spectra from adsorbed hydrocarbons. It has relatively large metal particles, typically in the diameter range of 5 to 15 nm. Samples were studied which were hydrogen-covered, hydrogen-depleted, oxygen-covered and “mature”, the latter in the sense that the catalyst had undergone a number of repeated adsorption/desorption/re-reduction cycles. The spectra were interpreted in terms of the adsorption sites available by using recent correlations between ν CO wavenumbers and different patterns of CO metal interactions in metal clusters of structures known from X-ray crystallography.The strongest ν CO absorptions were from linearly adsorbed OCPt species, but these were relatively uninformative (maxima in the region 2087 to 2084 cm−1 in all cases at saturation coverage) because strong dipolar coupling causes intensity-distortion and the merging-together of absorptions from different types of sites. Small proportions of sites, probably of an atomically rough nature from curved areas of the crystallites, gave weaker absorptions near 2050 and 2030 cm−1. On the oxygen-covered surface a sharp absorption at 2099 cm−1 denoted CO adsorption adjacent to sites of adsorbed oxygen.The weaker absorption bands in the ν CO bridged region were more informative. The strongest, near 1850 cm−1 was correlated with 2-fold bridged species adsorbed on (111) surfaces. Weaker, overlapping features near 1880 and 1795 cm−1 (separated from an overall contour with the aid of computer analysis) were correlated, respectively with 2-fold bridged species on (100) or (110) planes, and 3-fold bridged species on (111) planes. Weaker absorptions near 1700 cm−1 were considered to correspond to different types of adsorption sites involving unequal interactions of CO with at least two metal atoms.The “mature” Pt/SiO2 samples gave notably different spectra in both regions and this was tentatively attributed to the effect of residual carbon atoms on or near the Pt surface.A comparison was made of the present spectra with those previously published from similar experiments on a small-particle (ca 2 nm) Pt/SiO2 catalyst, EUROPT-1. The spectral differences could be well accounted for in terms of the reported raft-like (111)-based morphology of the small metal particles of the EUROPT-1 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号