首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to characterize the degree of heterogeneity brought about by oxygen plasma treatment of carbon fibers by studying its effects on the adsorption of n-alkanes. Untreated and unsized high-strength carbon fibers were subjected to oxygen plasma treatments with different degrees of severity. A sample of the same material oxidized following a standard industrial method was also studied for comparison. Adsorption of C5-C10n-alkanes at 303-353 K was measured by inverse gas chromatography (IGC). Elution peaks were symmetrical for the fresh and industrially oxidized samples; however, a large extent of asymmetry was observed for the plasma-treated fibers. Differences in surface heterogeneity were quantified in terms of several adsorption thermodynamic magnitudes. Differential heats of adsorption exhibited values similar to those corresponding to the probe-basal plane interaction. The dispersive component of the surface tension of the solids increased clearly upon plasma oxidation, the increase being systematic according to the severity of plasma treatment. It can be concluded that plasma oxidation generates high-surface-energy sites responsible for trapping of n-alkane molecules, this effect being more marked as the chain length increases. The possibility of this effect being associated to creation of micropores was ruled out on the basis of volumetric CO2 adsorption experiments and IGC measurements at finite dilution. Scanning tunneling microscopy observations allowed us to establish a possible connection between fiber surface nanostructure and IGC results. The sites accessible to n-alkane molecules in the industrially oxidized sample seem to be highly disordered, thus leading to a weaker interaction with the adsorbate.  相似文献   

2.
The microstructure of polyacrylonitrile (PAN)-based carbon fibers with different mechanical properties was investigated. It was found that the tensile strength of the PAN-based carbon fibers generally decrease with the increase in the modulus. The properties of PAN-based carbon fiber are mainly controlled by the microstructure and microvoids. The increase in size and orientation of graphite crystallites follows the decrease in interlayer space of graphite sheets, which accompanies the increase in modulus and decrease in tensile strength of the carbon fibers. Simultaneously, the increase in the modulus of the carbon fibers accompanies the merging of the elliptical microvoids along the fiber axis and the turbostratic graphite in the carbon fibers transforms into 3D ordered graphite lamellar structure. This work provides useful information on tailoring the mechanical properties of carbon fibers by adjusting the microstructure.  相似文献   

3.
Polyacrylonitrile‐based carbon fibers were modified by oxidation in air, and a systematic study of surface groups and surface resistance at different treated temperatures was made. Progressive fiber weight loss occurred with increasing extents of air oxidation, and it was approximately proportional to the extent of air oxidation from the onset of oxidation up to 400 °C. At this point 4.4% of the initial fiber weight had been lost. A faster loss of weight occurred as the extent of air oxidation increased from 400 °C to 700 °C. X‐ray photoelectron spectroscopy studies (C 1s and O 1s) indicated that the oxygen/carbon atomic ratio rose rapidly from 2.64% (as‐received carbon fiber) to 42.83% as the oxidation temperature was increased to 400 °C. Fourier transform infrared spectra showed the relative intensity of the peaks at about 3440 cm?1 from ―OH stretching vibrations and at 1634 cm?1 from ―C?O stretching vibrations increased significantly at 400 °C. FESEM micrographs showed that as‐received fibers show relatively smooth surface. With oxidation temperature increasing, the fiber surface was rougher. The surface resistance of treated carbon fibers decreased obviously with increasing oxidation temperatures. The most decrease was about 100% at 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A facile means for obtaining submicrometer carbon fibers with a nanoporous structure is presented. A mixture of polyacrylonitrile (PAN) and a copolymer of acrylonitrile and methyl methacrylate (poly(AN-co-MMA)) in dimethylformamide was electrospun into submicrometer fibers with a microphase-separated structure. During the followed oxidation process, the copolymer domains were pyrolyzed, resulting in a nanoporous structure that was preserved after carbonization. The microphase-separated structure of the PAN/poly(AN-co-MMA) electrospun fibers, the morphology, and porous structure of both the oxidized and the carbonized fibers were observed with scanning electron microscopy and transmission electron microscopy. The carbon fibers have diameters ranging from several hundred nanometers to about 1 microm. The nanopores or nanoslits throughout the fiber surface and interior with diameters of several tens of nanometers are interconnected and oriented along the longitudinal axis of the fibers. This unique nanoporous morphology similar to the microphase-separated structure in the PAN/poly(AN-co-MMA) fibers is attributed to the rapid phase separation, solidification, as well as the stretching of the fibers during electrospinning. The pore volume and pore size distribution of the carbonized fibers were investigated by nitrogen adsorption and desorption.  相似文献   

5.
Zhu F  Guo J  Zeng F  Fu R  Wu D  Luan T  Tong Y  Lu T  Ouyang G 《Journal of chromatography. A》2010,1217(50):7848-7854
Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.  相似文献   

6.
This paper is showed to explore the relationship between materials and their properties. The elements are defined by their features. It identifies the composition of the pyrolysis products obtained through pyrolysis in the structure of different designs. Two design specimens of carbon fibers structure with different directional load were fabricated, solid carbon fibers and hexagonal carbon fibers structure. The deformation behavior is well-known and has been analyzed. 3D finite element (FE) models were used to investigate both structures. There was some impact on the specimens used, and the behavior of the strain and stress line was captured. These results show that the positive Poisson's ratio of both composites structures obtained when appropriate yarn structure in the 3D material system is adopted in both designs. The main purpose of the experiment was to define and test the structure's use in industries that require carbon fiber material that has excessively excellent mechanical and thermal properties. DMA tests have been conducted, and both the thermal and mechanical properties investigated. The compositions can improve carbon vs the adhesion of the polymer matrix for carbon fibers structure, which allows the use of such fibers for the reinforcement of plastics without extra processing.  相似文献   

7.
徐坚  刘瑞刚 《高分子科学》2017,35(6):764-772
The microcrystalline structure and microvoid structure in carbon fibers during graphitization process(2300-2700 °C) were characterized employing laser micro-Raman scattering(Raman), X-ray diffraction(XRD), small angle X-ray scattering(SAXS), and high-resolution transmission electron microscopy(HR-TEM). The crystalline sizes(L_a, L_c) increased and interlayer spacing(d_(002)) decreased with increasing heat treatment temperature(HTT). The microvoids in the fibers grew up and contacted to the neighbors with the development of microcrystalline. In addition, the preferred orientation of graphite crystallite along fiber axis decreased and microvoids increased. The results are crucial for analyzing the evolution of microstructure of carbon fibers in the process of heat treatment and important for the preparation of high strength and high modulus carbon fibers.  相似文献   

8.
Pore and surface diffusion of carbon dioxide (CO(2)) and ethylene (C(2)H(4)) in the nanopores of ordered mesoporous silica fibers about 200 microm in length was measured by the transient gravimetric method. The experimentally determined pore diffusivity data, coupled with the porosity, pore size, and fiber length, are used to obtain the actual length of the nanopores in silica fibers. These measurements reveal a structure of the ordered nanopores whirling helically around the fiber axis with a spiral diameter of about 15 microm and a pitch value of 1.6 microm. At room temperature the surface diffusion contributes about 10% to the total diffusional flux for these two gases in the nanopores of the ordered mesoporous silica fibers. The surface diffusion coefficients for the ordered mesoporous silica fibers are about 1 order of magnitude larger than the non-ordered mesoporous alumina or silica with similar pore size.  相似文献   

9.
活性炭纤维吸附脱除NO过程中NO氧化路径分析   总被引:1,自引:0,他引:1  
在小型固定床吸附实验台上开展了黏胶基活性炭纤维吸附脱除NO的实验研究。采用H2O2溶液浸渍以及热处理方法对活性炭纤维表面进行修饰,以获得表面孔隙结构接近而含氧官能团含量不同的样品;考察样品在惰性氮气气氛、含氧气氛下吸附脱除NO的效果,以及表面含氧含氮官能团的变化规律。探讨了含氧官能团在NO催化氧化过程中的作用及含氧气氛下O2对于NO转化为NO2的影响,分析了活性炭纤维表面吸附的NO向NO2的主要转化途径。结果表明,在氮气气氛下活性炭纤维表面C-O官能团对吸附态的NO起到氧化作用,吸附态NO被C-O官能团氧化生成-NO2官能团;在含氧气氛下活性炭纤维吸附NO后表面出现-NO2、-NO3官能团,通过长时间实验测定三种样品在含氧气氛下对NO吸附的效果,发现三种样品稳定时催化氧化效果一致,表明含氧官能团对初始NO的物理吸附影响较大,而对整个吸附过程影响较小。吸附在活性炭纤维表面上的NO与环境气氛中的游离态O2发生氧化反应是NO转变为NO2的主要途径。  相似文献   

10.
The preparation, properties and application of carbon fibers for SPME   总被引:1,自引:0,他引:1  
Gierak A  Seredych M  Bartnicki A 《Talanta》2006,69(5):1079-1087
The conditions of preparation of new types of carbon fibers for solid phase micro extraction (SPME) prepared by methylene chloride pyrolysis (at 600 °C) on the quartz fiber (100 μm) as well as by supporting synthetic active carbon (prepared especially for this purposes) supported in a special epoxide-acrylic polymer is described. The properties of such carbon fibers for SPME were defined by determination of the partition coefficient of the tested substances (i.e., benzene, toluene, xylenes, trichloromethane and tetrachloromethane) and by the microscopic investigations with the application of the optical and scanning electron microscope.

The obtained carbon SPME fibers were applied to the analysis of some volatile organic compounds from its aqueous matrix. During chromatographic GC test, at the investigated SPME carbon fibers, we obtained different but mostly high partition coefficients for the determined compounds (Kfs from 120 for trichloromethane up to 11,500 for tetrachloromethane).

Owing to the high partition coefficients of the studied substances obtained on carbon fibers, it was possible to do the analysis of organic substances occurring in trace amounts in different matrices. In this paper, we present the analysis of BTX contents in the petrol analyzed with the application carbonized with CH2Cl2 SPME fiber (C1NM) and a headspace over the petrol sample (concentration of each BTX g/dm3).  相似文献   


11.
It is shown that the sorption method makes it possible to quantitatively estimate the presence of ordered structures in the supramolecular structure of partially crystalline and liquid-crystalline paraamide polymers. Using 1H NMR spectroscopy and the sorption method, the growth of liquid-crystalline type structures during spinning and thermal treatment of the poly(paraamide) fiber is analyzed. A comparison of the 1H NMR spectra of the as-spun and heat-treated fibers at low temperatures (110–210 K) in a rigid lattice reveals that “loose” disordered microregions occur in the fiber before thermal treatment. Thermal treatment results in the “healing” of structural defects and leads to the appearance of liquid-crystalline-type structures owing to the large-scale quasi-segmental motion at a high temperature.  相似文献   

12.
Surface characteristics of carbon fibers modified by direct oxyfluorination   总被引:3,自引:0,他引:3  
The effect of oxyfluorinated conditions on the surface characteristics of carbon fibers was investigated. Infrared (IR) spectroscopy results indicated that the oxyfluorinated carbon fibers showed carboxyl/ester groups (CO) at 1632 cm(-1) and hydroxyl groups (OH) at 3450 cm(-1) and had a higher OH peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results for the fibers also showed that oxyfluorination introduced a much higher oxygen concentration onto the fiber surfaces than fluorination with F(2) only. Additionally, contact-angle results showed that the surface was better wetted by following oxyfluorination and that the polarity of the surface was increased by increasing the oxyfluorination temperature.  相似文献   

13.
In this contribution, we first found the novel clathrate hydrate containing two gaseous guests of hydrogen and carbon dioxide by spectroscopic analysis. X-ray powder diffraction and NMR spectroscopy were used to identify structure and guest distribution of the mixed H2 + CO2 hydrate. X-ray diffraction result confirmed that the unit cell parameter was 11.8602 +/- 0.0010 A, and the formed hydrate was identified as structure I hydrate. 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP) NMR spectroscopy were used to examine the distribution of hydrogen and carbon dioxide molecules in the cages of structure I, respectively. These NMR spectra showed that carbon dioxide molecules occupied both small 512 cages and large 51262 cages, and hydrogen molecules only were occluded in small 512 cages of structure I. The new finding of the mixed hydrogen hydrate is expected to contribute toward the development of hydrogen production technology and, particularly, inclusion chemistry.  相似文献   

14.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

15.
The fluorination of carbon fibers results in a partial or total conversion of the carbon layers into CF layers. In constrast to the formation of intercalation compounds of carbon fibers, the fluorination causes considerable changes in the fiber texture which results in a marked decrease of tensile modulus and mechanical strength. The relationship between the structural changes and the resulting mechanical properties is studied by small-angle and wide-angle X-ray scattering.  相似文献   

16.
Studies on PAN-based carbon fibers irradiated by Ar+ ion beams   总被引:2,自引:0,他引:2  
In this work, the effects of Ar+ ion beam irradiation on carbon fibers were studied using tensile and surface analytical techniques. The single-fiber pull-out test was executed in order to characterize the fiber/epoxy matrix interfacial adhesion. The Ar+ ion beam was irradiated using an ion-assisted reaction (IAR) method in reactive gas conditions under an oxygen environment with 1 x 10(16) ions/cm(2) Ar+ ion dose (ID), 6 sccm blown gas flow rate, and different ion beam energy intensities. From the experimental results, both the interfacial shear strength (IFSS) and fracture toughness (Gi) were found to increase with increasing Ar+ ion irradiation intensity. This was probably due to the fact that Ar+ ion beam irradiation on carbon fibers was effective in altering their surface physical chemistry and structural morphology, resulting in improved interfacial adhesion in the fiber/epoxy matrix. The reliability of single-fiber pull-out test data could be improved by statistical analysis using the Weibull distribution, which served to predict the variation of the mechanical interfacial properties in a composite system.  相似文献   

17.
Effect of the catalyst composition on the structure of nanotubes layers obtained on the surface of carbon nanofibers was studied. We found the preliminary functionalization of the surface of carbon fibers to affect the coating uniformity and the thickness of synthesized nanotube layer. We determined the optimal surface concentration of the catalyst (Fe–Co) which provides uniform layer of nanotubes on the surface of carbon fibers. The effect of modification of the surface of carbon fibers with multi-walled carbon nanotubes on the mechanical properties of carbon fiber–epoxy resin composites was examined. The modification of the carbon fibers with multi-walled carbon nanotubes were shown to increase the flexural modulus and the flexural strength.  相似文献   

18.
 The grafting method that has successfully been applied to methacrylic acid and liquid crystalline monomers was expanded to prepare amphoteric carbon fiber surfaces using 2-(N,N-dimethylamino)ethyl methacrylate as monomer. The obtained carbon fiber surfaces were characterized by contact angle and ζ-potential measurements. The expected basic behavior was not observed, instead an amphoteric character of the modified carbon fiber surface was found. The fiber surfaces display a basic character in the acidic pH-range, while they are acidic in the alkaline part of the pH-scale. An important influence is derived from the amount of initiator used to graft the monomers onto the fibers. The smaller the initiator concen-tration used during polymerization, the larger the amount of amino functionalities introduced to the carbon fiber surface. The wetting behavior versus water depends on the overall conformation of the immobilized polymer. During immersion into water the polymer acts hydrophobic, while during emersion, a hydrophilic character is observed, probably derived from conformational changes and swelling during the contact angle measure-ments in water. Received: 9 June 1998 Accepted: 13 August 1998  相似文献   

19.
Activated carbon fibers, which exhibit high specific area and numerous active surface sites, constitute very powerful adsorbents and are widely used in filtration to eliminate pollutants from liquid or gaseous effluents. The fibers studied in this work are devoted to the filtration of gaseous effluent containing very small amounts (few vpm) of hydrogen sulfide. Preliminary experiments evidenced that these fibers weakly adsorb hydrogen sulfide. To improve their fixation capacity toward H(2)S the activated fibers are impregnated in an aqueous solution of potassium hydroxide. The impregnation treatment usually takes place before activation but in this work it occurs at room temperature after activation of the fibers. A further thermal treatment is performed to increase the efficiency of the system. The overall treatment leads to the creation of basic sites showing a great activity for H(2)S gas in the presence of water vapor. The mechanism has been established by a series of characterizations before, during, and after the different operation units. The KOH deposited after impregnation is carbonated into KHCO(3) at room temperature and then decomposed into K(2)CO(3) during the thermal treatment. K(2)CO(3) and H(2)S dissolve in a liquid aqueous solution formed on the fiber surface. Then carbonate ions and H(2)S molecules react together almost completely to yield HS(-) species. As a consequence the sorption capacities of hydrogen sulfide on the impregnated fibers are much higher, even for small hydrogen sulfide volume fractions.  相似文献   

20.
Carbon fibers are state-of-the-art materials with properties that include being light weight, high strength, and chemically stable, and are applied in various fields including aeronautical science and space science. Investigation of applications of carbon fibers to biomaterials was started 30 or more years ago, and various products have been developed. Because the latest technological progress has realized nano-level control of carbon fibers, applications to biomaterials have also progressed to the age of nano-size. Carbon fibers with diameters in the nano-scale (carbon nanofibers) dramatically improve the functions of conventional biomaterials and make the development of new composite materials possible. Carbon nanofibers also open possibilities for new applications in regenerative medicine and cancer treatment. The first three-dimensional constructions with carbon nanofibers have been realized, and it has been found that the materials could be used as excellent scaffolding for bone tissue regeneration. In this critical review, we summarize the history of carbon fiber application to the biomaterials and describe future perspectives in the new age of nano-level control of carbon fibers (122 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号