共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang X Danoff EJ Sinkov NA Lee JH Raghavan SR English DS 《Langmuir : the ACS journal of surfaces and colloids》2006,22(15):6461-6464
Vesicles formed from the cationic surfactant, cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), were used to sequester the anionic dye carboxyfluorescein. Carboxyfluorescein was efficiently sequestered in CTAT-rich vesicles via two mechanisms: encapsulation in the inner water pool and electrostatic adsorption to the charged bilayer. The apparent encapsulation efficiency (22%) includes both encapsulated and adsorbed fractions. Entrapment of carboxyfluorescein by SDBS-rich vesicles was not observed. Results show the permeability of the catanionic membrane is an order of magnitude lower than that of phosphatidylcholine vesicles and the loading capacity is more than 10 times greater. 相似文献
2.
Soussan E Mille C Blanzat M Bordat P Rico-Lattes I 《Langmuir : the ACS journal of surfaces and colloids》2008,24(6):2326-2330
A new sugar-derived tricatenar catanionic surfactant (TriCat) was developed to obtain stable vesicles that could be exploited for drug encapsulation. The presence of the sugar moiety led to the formation of highly hydrophilic stoichiometric catanionic surfactant systems. The three hydrophobic chains permitted vesicles to form spontaneously. The self-assembly properties (morphology, size, and stability) of TriCat were examined in water and in buffer solution. Encapsulation studies of a hydrophilic probe, arbutin, commonly used in cosmetics for its whitening properties, were performed to check the impermeability of the vesicle bilayer. The enhancement of hydrophobic forces by the three chains of TriCat prevented surfactant equilibrium between the bilayer and the solution and enabled the probe to be retained in the aqueous cavity of the vesicles for at least 30 h. Thus, the present study suggests that this tricatenar catanionic surfactant could be a promising delivery system for hydrophilic drugs. 相似文献
3.
Zhu Z Xu H Liu H Gonzalez YI Kaler EW Liu S 《The journal of physical chemistry. B》2006,110(33):16309-16317
Polymerizable cationic surfactant methacryloyloxyoctyl trimethylammonium bromide (MOTB) and anionic surfactant sodium 4-(omega-methacryloyloxyoctyl)oxy benzene sulfonate (MOBS) were synthesized. Stable catanionic vesicles can spontaneously form upon mixing the two oppositely charged surfactants in aqueous solution, which was further permanently fixed by polymerization. Surface tensiometry, nuclear magnetic resonance (NMR), static and dynamic laser light scattering (LLS), and cryogenic transmission electron microscopy (cryo-TEM) were used in combination to characterize the catanionic vesicles before and after polymerization. The kinetics of formation and breakdown of unpolymerized catanionic vesicles were studied in detail employing stopped-flow light scattering. In contrast to unpolymerized vesicles, the polymerized ones exhibit permanent stability under external perturbations such as dilution or adding excess MOTB. A tentative explanation is proposed about why free radical polymerization can successfully fix the catanionic vesicles, the structure of which is well-known to be in dynamic equilibrium exchange with unimers. 相似文献
4.
Chi-Ching Lin Chien-Hsiang Chang Yu-Min Yang 《Colloids and surfaces. A, Physicochemical and engineering aspects》2009,346(1-3):66-74
The gelation of two spontaneously formed charged catanionic vesicles by four water soluble polymers was systematically studied by tube inversion method and rheology. Eight phase maps were successfully documented for the catanionic vesicle–polymer mixtures. The experimental results, as represented by the relaxation time and the storage modulus at 1 Hz, revealed that the catanionic vesicle–polymer interactions at play were of electrostatic and hydrophobic origin. Firstly, no association between charged catanionic vesicles and the polymer without charge/hydrophobic modification was observed due to lack of both electrostatic and hydrophobic effects. Secondly, hydrophobic interactions accounted for the association between the hydrophobically modified polymer without charge and charged catanionic vesicles with hydrophobic grafts of the polymer inserting in the catanionic vesicle bilayer. Thirdly, the positively charged polymer without hydrophobic modification could interact with negatively charged catanionic vesicles through electrostatic force on one hand but could not interact with positively charged catanionic vesicles on the other hand. Finally, the positively charged polymer with hydrophobic modification could interact both electrostatically and hydrophobically with negatively charged catanionic vesicles, resulting in the formation of strong gels. The hydrophobic interaction might even overcome the unfavorable electrostatic interaction between the positively charged vesicles and the polymer with positive charge/hydrophobic modification. 相似文献
5.
Korobko AV Backendorf C van der Maarel JR 《The journal of physical chemistry. B》2006,110(30):14550-14556
We report the design and structural characterization of cationic diblock copolymer vesicles loaded with plasmid DNA based on a single emulsion technique. For this purpose, a DNA solution was emulsified in an organic solvent and stabilized by an amphiphilic diblock copolymer. The neutral block forms an interfacial brush, whereas the cationic attachment complexes with DNA. A subsequent change of the quality of the organic solvent results in the collapse of the brush and the formation of a capsule. The capsules are subsequently dispersed in aqueous medium to form vesicles and stabilized with an osmotic agent in the external phase. Inside the vesicles, the plasmid is compacted in a liquid-crystalline fashion as shown by the appearance of birefringent textures under crossed polarizers and the increase in fluorescence intensity of labeled DNA. The compaction efficiency and the size distribution of the vesicles were determined by light and electron microscopy, and the integrity of the DNA after encapsulation and subsequent release was confirmed by gel electrophoresis. We demonstrate reverse transfection of in vitro cultured HeLa cancer cells growing on plasmid-copolymer vesicles deposited on a glass substrate. 相似文献
6.
7.
C Fowley B McCaughan A Devlin I Yildiz FM Raymo JF Callan 《Chemical communications (Cambridge, England)》2012,48(75):9361-9363
Highly luminescent, water-soluble and biocompatible Carbon Quantum Dots (aqCQDs) were prepared by encapsulating the parent hydrophobic CQDs in an amphiphilic polymer. The resulting aqCQDs were non-toxic to living cells, and were found to cross the cell membrane and localise primarily in the cytosol. 相似文献
8.
Coldren BA Warriner H van Zanten R Zasadzinski JA Sirota EB 《Langmuir : the ACS journal of surfaces and colloids》2006,22(6):2465-2473
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bending elasticity decreases with increasing water dilution, in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles to be equilibrium structures. The measurements of the bending elasticity are confirmed by the transition of the lamellar phase of CTAT/SDBS from a turbid, viscoelastic gel to a translucent fluid as the water fraction is decreased below 40 wt %. Freeze-fracture electron microscopy shows that the gel is characterized by spherulite defects made possible by spontaneous bilayer curvature and low bending elasticity. This lamellar gel phase is common to a number of catanionic surfactant mixtures, suggesting that low bending elasticity and spontaneous curvature are typical of these mixtures that form spontaneous vesicles. 相似文献
9.
Kepczyński M Lewandowska J Romek M Zapotoczny S Ganachaud F Nowakowska M 《Langmuir : the ACS journal of surfaces and colloids》2007,23(13):7314-7320
A simple and effective way to synthesize hollow silicone resin particles of controlled diameter is presented. The synthesis utilizes catanionic vesicles as templates for the polycondensation/polymerization processes of 1,3,5,7-tetramethylcyclotetrasiloxane (D4H) within their membranes. Two different surfactant systems were used to form the vesicular templates: mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecylbenzenesulfonate (SDBS) in the cationic (the DTAB/SDBS system) or anionic (the SDBS/DTAB system) rich region of the phase diagram. The templates obtained from these surfactant mixtures form spontaneously unilamellar vesicles in aqueous solution. The vesicular templates swell upon addition of D4H, thus increasing their size. The silicone resin was obtained in acid- or base-catalyzed polycondensation and ring-opening polymerization processes of D4H. In the case of the DTAB/SDBS system the formation of a densely cross-linked silicone material with SiO3/2 units allowed the nanocapsules to retain the vesicular shape after removal of the template, whereas in the SDBS/DTAB system, the polymer produces capsules which are too smooth to support surfactant lysis. The morphology of the silicone nanocapsules was analyzed using transmission electron microscopy (TEM) and, in some cases, atomic force microscopy (AFM). TEM and AFM reveal discrete hollow particles with a small amount of linked or aggregated hollow silica shells. 相似文献
10.
Antunes FE Brito RO Marques EF Lindman B Miguel M 《The journal of physical chemistry. B》2007,111(1):116-123
Vesicles composed of an anionic and a cationic surfactant, with a net negative charge, associate strongly with a hydrophobically modified polycation (LM200) and with an unmodified polycation with higher charge density (JR400), forming viscoelastic gel-like structures. Calorimetric results show that in these gels, LM200 induces a rise of the chain melting temperature (Tm) of the vesicles, whereas JR400 has the opposite effect. For both polymer-vesicle systems, the shear viscosity exhibits an inflection point at Tm, and for the LM200 system the measured relaxation times are significantly higher below Tm. The neat vesicles and the polycation-bound vesicles have a polygonal-like faceted shape when the surfactant chains in the bilayer are crystallized, as probed by cryo-transmission electron microscopy. Above Tm, the neat and the LM200-bound vesicles regain a spheroidal shape, whereas those in the JR400 system remain with a deformed faceted shape even above Tm. These shape changes are interpreted in terms of different mechanisms for the polymer-vesicle interaction, which seem to be highly dependent on polymer architecture, namely charge density and hydrophobic modification. A crystallization-segregation mechanism is proposed for the LM200-vesicle system, while, for the JR400-vesicle one, charge polarization-lateral segregation effects induced by the polycation in the catanionic bilayer are envisaged. 相似文献
11.
Polymer encapsulation within giant lipid vesicles 总被引:2,自引:0,他引:2
We report encapsulation of polymers and small molecules within individual giant lipid vesicles (GVs; 3-80 microm), as determined by confocal fluorescence microscopy. Polymer-bound or free dyes were encapsulated within GVs by including these molecules in the aqueous solution during vesicle formation via gentle hydration. Encapsulation efficiencies of individual GVs (EE(ind)) were determined from the fluorescence intensity ratio inside vs outside the vesicle. EE(ind) varied considerably from vesicle to vesicle, with interior solute concentrations for GVs within the same batch ranging from much less than to slightly more than the initial concentration. The majority of GVs had high internal concentrations of polymer or small-molecule encapsulants equal to or slightly greater than the external concentration. EE(ind) decreased for high molecular weight polymers (e.g., dextran 500 000), but was relatively insensitive to the GV diameter, membrane composition, or incubation temperature in our experiments. Knowledge of EE(ind) is important for quantitative evaluation of reactions occurring within GVs (e.g., enzymatic processes) and for optimizing encapsulation conditions. 相似文献
12.
In comparison with cationic liposomes, catanionic vesicles possess more attractive properties such as stability and lower cost, and these characteristics may make them suitable as a non-viral vehicle and for other biomedical applications such as vaccine adjuvants. However, very little is known about their possible cytotoxic mechanisms in cellular system. Also, this information is vital for the future development of safe biomedical systems. In the current study, the cytotoxic effect of catanionic vesicles, consisting of anionic surfactant (SDS), cationic surfactant (HTMAB), and cholesterol, in cultured RAW 264.7 murine macrophage-like cells was determined. The treatment of catanionic vesicles produced a dose-dependent effect on macrophage cells. RAW 264.7 cells exposed to catanionic vesicles exhibited morphological features of apoptosis such as chromatin condensation. Typical apoptotic ladders were observed in DNA extracted from RAW 264.7 cells treated by catanionic vesicles. Analysis from flow cytometry demonstrated an increase of hypodiploid DNA population (sub-G1) and a simultaneous decrease of diploid DNA content, indicating that DNA cleavage occurred after exposure of the cells with catanionic vesicles. In addition, it was shown that pretreatment of RAW 264.7 cells with the general caspase inhibitor (zVAD-fmk) did not prevent apoptosis induced by catanionic vesicles, suggesting that apoptosis in macrophage cells followed a caspase-independent pathway induced by catanionic vesicles. These data provide novel insight into the effect of catanionic vesicles on the mechanisms of cell death induced by catanionic vesicles. 相似文献
13.
Salt-free 1:1 cationic/anionic (catanionic) surfactant mixture tetradecyltrimethylammonium laurate (TTAL) could be prepared by mixing equimolar tetradecyltrimethylammonium hydroxide (TTAOH) and lauric acid (LA) in water. Given the condition of suitable range of weight fraction of TTAL in total surfactant, rho=WTTAL/(WTTAL+WLA), and at existence of a small amount of water, it was found that the mixtures of so-obtained TTAL and LA could spontaneously form stable reverse vesicles in various organic solvents including toluene, tert-butylbenzene, and cyclohexane. The reverse vesicle phase shows a blue color against room light and exhibits strong birefringence under polarized microscope. The reverse vesicles are very sensitive to temperature change. Increasing temperature could make the rho values within which reverse vesicles were constructed move to higher values. In organic solvents of alkanes such as n-heptane, reverse vesicles could still form but become unstable upon time and centrifugation. Increasing temperature could accelerate phase separation, and finally a gel-like bottom phase was usually observed. Interestingly, the stable reverse vesicles formed by so-called salt-free catanionic surfactant mixtures still show some resistance against adding inorganic salts. They can trap inorganic ions such as Zn2+ and S2- into their hydrophilic layers. This opens the door for template applications of reverse vesicles to prepare inorganic nanoparticles. 相似文献
14.
The sodium dodecyl benzene sulfonate (SDBS)/cetyltrimethyl-ammonium tosylate (CTAT)/water ternary system has previously been shown to give rise to the formation of vesicles for well-defined compositions requiring an excess of one of the surfactants over the other. Two types of vesicular systems can thus be obtained (named V(+) and V(-), depending on the nature of the excess surfactant, i.e., CTAT or SDBS, respectively). In addition, the pure ion-pair amphiphile (IPA) can be obtained after removing the counterions. These different systems (V(+), V(-), and IPA) were investigated in regards to their ability to susbtantially retain a hydrophilic probe such as glucose. The influence of the initial glucose and surfactant concentrations was studied, and dialysis experiments were conducted with a view to determine the kinetics of glucose entrapment and release by the vesicles and, thus, to assess the possibility of a long-term encapsulation. The results indicate that all the vesicular systems studied here are characterized by quite a high permeability of the amphiphilic bilayer. However, SDBS-rich (V(-)) and IPA vesicles proved to be less permeable than CTAT-rich (V(+)) vesicles. 相似文献
15.
Highly biocompatible pH-sensitive diblock copolymer vesicles were prepared from the self-assembly of a biocompatible zwitterionic copolymer, poly[2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate], PMPC-b-PDPA. Vesicle formation occurred spontaneously by adjusting the solution pH from pH 2 to above 6, with the hydrophobic PDPA chains forming the vesicle walls. Transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and UV-visible absorption spectrophotometry were used to characterize these vesicles. Gold nanoparticle-decorated vesicles were also obtained by treating the vesicles with HAuCl4, followed by NaBH4. 相似文献
16.
Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles 总被引:2,自引:0,他引:2
Four ion-pair amphiphiles (IPAs), derived from the pairing of alkyltrimethylammonium chlorides and sodium alkyl sulfates, were used to form catanionic vesicles in water upon the mechanical dispersion method. For the first time in the literature, short-chained alcohols (methanol, ethanol, 1-propanol, and 1-butanol) were added as cosolvents at a variety of concentrations and systematically studied for their effects on the stability of the ensuing vesicles. Dynamic light scattering measurements indicated that vesicles formed from one of the IPAs (i.e., dodecyltrimethylammonium dodecyl sulfate) could be efficiently and successfully stabilized by the addition of appropriate amounts of 1-propanol and 1-butanol. Maximum lifetimes of more than 1 year and 132 days for stable vesicles in 5% 1-butanol and 15% 1-propanol solutions, respectively, were observed, and this demonstrates that a novel method for the stabilization of catanionic vesicles formed from IPAs becomes available by means of cosolvent addition. Furthermore, the stability of catanionic vesicles was found to be strongly dependent on cosolvent concentration. In general, the vesicle stability increased with increasing the cosolvent concentration, reached a maximum at a specific concentration, and thereafter decreased with further increasing the concentration. The vesicles finally disintegrated into constituent molecules in solutions of high cosolvent concentrations. An explanation of cosolvent effects based on the medium dielectric constant was proposed. 相似文献
17.
We report the effect of macromolecular crowding on encapsulation efficiency of fluorescently labeled poly(ethylene glycol) (PEG) and dextran polymers within individual giant lipid vesicles (GVs). Low concentrations of the fluorescently labeled polymers (82 nM to 186 pM) were mixed with varying concentrations of nonfluorescent polymers that served as crowding agents during vesicle formation by gentle hydration. Encapsulation efficiency of the fluorescently labeled polymers in individual GVs (EEind) was determined via confocal fluorescence microscopy. EEind for high molecular weight polymers (e.g., fluorescein isothiocyanate (FITC)-dextran 500 and 2000 kDa) increased substantially in the presence of several weight percent unlabeled PEG or dextran. For example, when 0.24 microM FITC dextran 500 kDa was encapsulated, addition of 3% PEG 8 kDa improved the mean concentration in the GVs from 0.14 microM (+/-50%) to 0.24 microM (+/-12%). Light scattering data indicate reduced hydrodynamic radii for polymers as a function of increasing polymer concentration, suggesting that the improvements in EEind result from polymer condensation due to macromolecular crowding. Polymeric cosolutes did not significantly impact EEind for lower molecular weight polymers (e.g., Alexa Fluor 488-PEG 20 kDa), which already encapsulated efficiently (EEind to approximately 1). However, for both the higher and lower molecular weight labeled polymers, cosolutes led to improved uniformity in EEind for vesicles within a batch. Methods for improving the value and homogeneity of EEind for polymeric solutes in lipid vesicles are important in a variety of applications, including the use of vesicles as microreactors and as vehicles for drug delivery. 相似文献
18.
Biocompatible polypeptide capsules with high enzyme loading and activity prepared by templating mesoporous silica spheres were used as biomimetic reactors for performing CaCO3 synthesis exclusively inside the capsule interior via urease-catalyzed urea hydrolysis. 相似文献
19.
Chih-Jung Wu An-Tsung Kuo Chen-Hsuan Lee Yu-Min Yang Chien-Hsiang Chang 《Colloid and polymer science》2014,292(3):589-597
In this study, a pseudodouble-chained ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), was prepared from a mixture of cationic surfactant, hexadecyltrimethylammonium bromide, and anionic surfactant, sodium dodecylsulfate. Positively charged catanionic vesicles were then successfully fabricated from HTMA-DS with the addition of cationic surfactants, dialkyldimethylammonium bromide (DXDAB), including ditetradecyldimethylammonium bromide (DTDAB), dihexadecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide (DODAB), with a mechanical disruption approach. The control of charge characteristic and physical stability of the catanionic vesicles through the variations of DXDAB molar fraction and alkyl chain length was then explored by size, zeta potential, and Fourier transform infrared analyses. It was found that the molecular packing and/or molecular interaction of HTMA-DS with DXDAB rather than the electrostatic repulsion between the charged vesicles dominated the physical stability of the mixed HTMA-DS/DXDAB vesicles. The presence of DTDAB, which possesses short alkyl chains, could adjust the packing of the unmatched chains of HTMA+ and DS? and promote the vesicle formation. However, the weak molecular interaction due to the short chains of DTDA+ could not maintain the vesicle structures in long-term storage. With increasing the alkyl chain length of DXDAB, it was possible to improve the vesicle physical stability through the enhanced molecular interaction in the vesicular bilayer. However, the long alkyl chains of DODAB unmatched with those of HTMA-DS, resulting in the vesicle disintegration in long-term storage. For the formation of stable charged catanionic vesicles of HTMA-DS/DXDAB, a good match in hydrophobic chains and strong molecular interaction were preferred for the vesicle-forming molecules. 相似文献
20.
Using molecular dynamics simulation, we performed theoretical calculations on the curvature constant and edge energy of bilayers of salt-free, zero-charged, cationic and anionic (catanionic) surfactant vesicles composed of alkylammonium cations (C(m)(+)) and fatty acid anions (C(n)(-)). Both the minimum size and edge energy of vesicles were calculated to examine the relation between the length of the surfactant molecules and the mechanical properties of the catanionic bilayers. Our simulation results clearly demonstrate that, when the chain lengths of the cationic and anionic surfactants are equal, both the edge energy and the rigidity of the catanionic bilayers increase dramatically, changing from around 0.36 to 2.77 kBT·nm(-1) and around 0.86 to 6.51 kBT·nm(-1), respectively. For the smallest catanionic vesicles, the curvature is not uniform and the surfactant molecules adopt a multicurvature arrangement in the vesicle bilayers. We suspect that the multicurvature bending of bilayers of catanionic vesicles is a common phenomenon in rigid bilayer systems, which could aid understanding of ion transport through bilayer membranes. 相似文献