首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific adsorption of radiolabeled phosphate ions from perchlorate supporting electrolyte onto gamma-Al2O3 and hematite powder has been investigated. The pH dependence of the adsorption of phosphate species was compared with that of sulfate ions. It was demonstrated that in contrast to the behavior of sulfate ions the pH dependence of phosphate ions goes through a maximum. On the other hand, it was found that the reversible adsorption of phosphate ions is accompanied by the formation of strongly chemisorbed species. Results obtained from a study of the competitive adsorption of sulfate and phosphate ions at various pH values are reported and interpreted. An attempt is made to correlate the experimental findings with the models for anion adsorption reported in the literature.  相似文献   

2.
3.
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1).  相似文献   

4.
We have investigated the adsorption of herring sperm DNA on Fe3O4 magnetic nanoparticles (NPs) before and after modification with the ionic liquid 1-hexyl-3-methylimidazolium bromide. Experiments were performed in a batch mode, and the effects of DNA concentration, pH of the sample solution, ionic strength, temperature, and contact time between reagents were optimized. An evaluation of the adsorption isotherm revealed that the Langmuir model better fits the equilibrium data than the Freundlich model. The maximum adsorption capacities of the unmodified and modified NPs, respectively, were found to be 11.8 and 19.8 mg DNA per gram of adsorbent. The adsorption of DNA onto the modified NPs was endothermic, while it was exothermic in the case of the unmodified NPs. The DNA can be desorbed from the modified surfaces of the NPs by using EDTA as the eluent. The NPs were able to adsorb about 90?±?1.5 % of DNA after being recycled for three times. The method is simple, fast, robust, and does not require organic solvents or sophisticated equipment.
Figure
Fe3O4 nanoparticles as well as 1-hexyl-3-methylimidazolium bromidecoated Fe3O4 nanoparticles were prepared and used for adsorption of DNA. The mean size and the surface morphology of both nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. The correlation coefficient of the Langmuir model suggests a better fit for the experimental equilibrium adsorption data.  相似文献   

5.
Cu-Pd/Al2O3 bimetallic catalysts have been characterized by XRD, TEM, and EDX techniques. The surface structure has been investigated by FT-IR spectroscopy of low-temperature adsorbed CO in the reduced and in the oxidized state. Evidence has been provided of the formation of Cu-Pd alloy nanoparticles, both of the alpha-phase (disordered fcc) and of the beta-phase (ordered CsCl-type). IR spectra suggest that Cu likely decorates the edges while Pd mostly stays at the main faces. Part of copper disperses as Cu+ on the support even after reduction. The presence of copper seems to modify strongly the sate of oxidized Pd centers in oxidized high-Pd content materials. The redox chemistry of the system, where Pd is reduced more easily than Cu, appears to be very complex.  相似文献   

6.
Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.  相似文献   

7.
A new sorbent comprising 3-aminopropyltriethoxy-silane-coated magnetic nanoparticles functionalized with organic moieties containing the cobalt(III) porphyrin complex Co (TCPP) [TCPP: 4,4′,4″,4″′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis (benzoic acid)], was prepared, for nitrite removal from drinking water. Fe3O4 nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+, then surface of the Fe3O4 nanoparticles was modified with APTES and Co (TCPP). The sorbent was characterized using FTIR, TGA, XRD, SEM and TEM analysis. The batch experiments showed that the proposed sorbent can effectively be used to remove nitrite from water. Various parameters such as pH of the solution, contact time, sorbent dosage, concentration of desorbing reagent, and influence of other interfering anions have been investigated. Under optimal conditions for a nitrite concentration of 10 mg L?1 (i.e., contact time 15 min, pH 5.5 and nanosorbents dosage 100 mg), the percentage of the extracted nitrite ions was 92.0. Nitrite sorbing material was regenerated with 10 mM NaOH up to 97.0 %. The regeneration studies also showed that nanosorbents are regenerable and can be used for a couple of times.  相似文献   

8.
《Mendeleev Communications》2023,33(2):160-163
New nanocomposites based on Fe3O4 magnetic nanoparticles coated with SiO2 or SiO2/aminopropylsilane (APS), including those using N-(phosphonomethyl)iminodiacetic acid (PMIDA), were obtained, and the immobilization of the antitumor agent doxorubicin (Dox) on nanocomposites was examined. It has been shown that the binding of Dox to the negatively charged surface of SiO2 particles occurs more efficiently than that to the APS-modified surface with positively charged amino groups; the presence of PMIDA molecules on the surface significantly increased the loading content. Based on DFT calculations, a mechanism for Dox binding to the surface of the synthesized nanocomposites was proposed.  相似文献   

9.
Two important iron oxides:Fe3O4 and Fe2O3,as well as Fe3O4 and Fe2O3 nanoparticles mingling with Ag were successfully synthesized via a hydrothermal procedure.The samples were confirmed and characterized by X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The morphology of the samples was observed by transmission electron microscopy(TEM).The results indicated Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 samples all were nanoparticles with smaller sizes.The samples were modified on a glassy carbon electrode and their elctrocatalytic properties for p-nitrophenol in a basic solution were investigated.The results revealed all the samples showed enhanced catalytic performances by comparison with a bare glassy carbon electrode.Furthermore,p-nitrophenol could be reduced at a lower peak potential or a higher peak current on a glassy carbon electrode modified with Ag/Fe3O4 or Ag/Fe2O3 composite nanoparticles.  相似文献   

10.
Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles.  相似文献   

11.
Detailed structure of Br?nsted acid sites on the surface of SO3/Al2O3 catalyst has been proposed based on 1H/27Al TRAPDOR NMR results and the acidity of the catalyst has also been characterized by NMR probe molecules.  相似文献   

12.
Research on Chemical Intermediates - Fe3O4 magnetic nanoparticles coated with a TiO2 film (Fe3O4@TiO2 nanoparticles) have been synthesized by use of a modified Stöber method and used for...  相似文献   

13.
Ag on gamma-alumina is a promising catalyst for hydrocarbon selective catalytic reduction in lean-burn gasoline and diesel engines for transportation applications. Although much is known about the mechanism of NOx reduction and the various intermediates, little agreement exists on the nature of the active silver species. In the present work, aberration-corrected STEM has provided new information about the nature of Ag on alumina both as impregnated and following treatments at various temperatures with exposure to simulated exhaust gas. Ex situ techniques have provided new insights into the evolution of Ag on alumina following exposure to temperature and simulated exhaust gas.  相似文献   

14.
The oxidation of Fe(II) with H2O2 has been measured in NaCl and NaClO4 solutions as a function of pH, temperature T (K) and ionic strength (M, mol-L–1). The rate constants, k (M–1-sec–1), d[Fe(II)]/DT=-k[Fe(II)][2O2]at pH=6.5 have been fitted to equations of the formlog k = log k0+ AI 1/2+BI+CI 1/2/T Where log k0=15.53-3425/T in water; A=–2.3, –1.35; B=0.334, 0.180; and C=391, 235, respectively, for NaCl (=0.09) and NaClO4 ( =0.08). Measurements made in NaCl solutions with added anions yield rates in the order B(OH) 4 >HCO 3 >ClO 4 >Cl>NO 3 >SO 4 2– and are attributed to the relative strength of the interactions of Fe2+ or FeOH+ with these anions. The FeB(OH) 4 + species is more reactive while the FeCO 3 0 , FeCl+, FeNO 3 + and FeSO 4 0 species are less reactive than the FeOH+ ion pair. The general trend is similar to our earlier studies of the oxidation of Fe(II) with O2 except for B(OH) 4 . The effect of pH on the logk was found to be a quadratic function of the concentration of H+ or OH from pH=4 to 8. These results have been attributed to the different rate constants for Fe2+ (k0) and FeOH+ (k1) which are related to the measured k by, k=k0Fe + k1FeOH, where i is the molar fraction of species i. The rates increase due to the greater reactivity of FeOH+ compared to Fe2+. k0 is independent of composition and ionic strength but k1 is a function of ionic strength and composition due to the interactions of FeOH+ with various anions.  相似文献   

15.
The specific adsorption of anions (HSO4 , Cl) present in low concentration (c < 10−3 mol dm−3) was studied by radiotracer techniques in the course of the reduction of dichromate (chromate) species in 1 mol dm−3 HClO4 supporting electrolyte. In accordance with the results of preliminary studies reported earlier, enhancement of the anion adsorption was found, induced by some adsorbed intermediates of the reduction process. Potential dependence of the induced adsorption and its correlation with the reduction rate was investigated. The role of adsorption competition between various anions is discussed. It is concluded that study of the induced anion adsorption could be a tool for the investigation of the sorption of intermediates formed in the course of the reduction. Received: 3 May 1999 / Accepted: 10 June 1999  相似文献   

16.
光催化作为节能、清洁的环境处理技术,被广泛应用于污染物处理领域,如室内气体净化、尾气VOCs处理和水体有机污染降解等.在众多光催化剂中,TiO2以其良好的化学稳定性、无二次污染、无刺激性和安全无毒等优势得到广泛研究.然而TiO2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,光生电子-空穴易复合,这限制了其应用.过渡金属离子掺杂能在TiO2价带之上形成新的掺杂能级,从而提高其光谱响应范围,提高全光谱反应活性; 与体相TiO2相比,纳米尺寸的TiO2具有更高的光催化活性,尤其小于10 nm的量子点尺寸TiO2有着高活性面积、较短的光生电子-空穴迁移路径和独特的量子尺寸效应; Fe2O3作为吸附材料与TiO2构建复合材料能够发挥吸附与光催化协同作用,从而提高污染物处理效率.我们以构建Fe掺杂TiO2和Fe2O3量子点共负载催化剂为目标,以钛酸四丁酯(TBT)和硫酸亚铁为前驱体,采用常温水解方法将Fe掺杂的TiO2量子点生长在MCM-41分子筛表面,并通过调节硫酸亚铁加入量合成了MCM-41负载的Fe掺杂TiO2和Fe2O3量子点催化剂.采用透射电子显微镜和X射线衍射研究了复合晶体结构,采用X射线光电子能谱、紫外-可见光谱和傅里叶变换红外光谱等表征手段研究了复合量子点材料生长机理和能带结构.结合吸附过程和光降解过程建立了吸附与光催化协同作用与污染物处理效率之间的关联关系.表征结果表明,硫酸亚铁水溶液加速TBT水解成功地在MCM-41表面生长了Fe掺杂TiO2量子点,并且量子点粒径随Fe前驱体量的增加而变大; 前驱体比例Ti/Fe ≤ 3.0时,过量的硫酸亚铁会析出并在焙烧过程中在MCM-41上分解为Fe2O3量子点,Fe2O3量随着硫酸亚铁加入量提高而增多.通过调节Fe前驱体的量,一方面Fe掺杂在二氧化钛价带之上形成了掺杂能级,减小了带隙,拓宽了光响应范围,另一方面引入适量Fe2O3量子点,实现了Fe掺杂TiO2和Fe2O3量子点共负载催化剂的构建.复合材料实现了吸附过程与光催化降解过程的协同作用,Fe2O3将污染物富集于催化剂表面,Fe掺杂TiO2将其有效降解,大大提高了污染物处理能力,其中FT/M-3.0处理效率最高,并在10次循环处理后依然维持较高的吸附能力和光催化降解能力.该工作为高效光催化水处理催化剂的设计和构建提供了新思路和策略.  相似文献   

17.
The dispersion of thoria on the surface of gamma-Al2O3 and the surface properties of ThO2/gamma-Al2O3 samples, as well as the influence of the loading amount of thoria on the reduction behavior of copper oxide species, have been studied using XRD, XPS, FTIR, and TPR. The results indicate that the dispersion capacity of thoria, like that of ceria, is much lower than for two other tetravalent metal oxides, zirconia and titania, and the surface adsorption amount of the carbonyl compound and H2O slightly increases with increasing thoria loading. The different thoria loadings can influence the reduction behavior of the dispersed copper oxide by comparing the TPR results of CuO/ThO2/gamma-Al2O3 samples. In addition, the lower dispersion capacities of thoria and ceria on gamma-Al2O3 are tentatively discussed by considering the structural stability of the two oxides.  相似文献   

18.
In this study, nanoparticles of Fe2O3/Mn2O3 mixture were obtained using the sol–gel method. The synthesis uses the combination of polyvinyl alcohol (PVA) and tartaric acid (TA). Synthesized catalysts prove superior compared to those afforded from previous reports. To be specific, desired catalysts can be received at lower calcination temperature. Furthermore, their structures display higher uniformity in term of particle sizes. Finally, they show better performance for the photocatalytic degradation of model-persistent organic compounds.  相似文献   

19.
The reaction of copper sulfate, boric acid, and sodium hydroxide in an aqueous solution was studied in relation to the molar ratio and concentration of components, solution pH, temperature, and reaction duration. The conditions under which tricuprotetraborate hexahydrate 3CuO · 2B2O3 · 6H2O is formed were determined.  相似文献   

20.
B3LYP/LANL2DZ and B3LYP/6-31G(d)-restricted and -unrestricted calculations are employed to calculate energies and adsorption forms of formaldehyde adsorbed on planar and on tetrahedral Pd4 clusters and on a Pd4 cluster supported on Al10O15. Formaldehyde adsorbs on planar Pd4 in the eta(2)(C,O)-di-sigma adsorption mode, while on tetrahedral Pd4, it adsorbs in the eta(2)(C,O)-pi adsorption mode. The adsorption energy on planar Pd4 is -21.4 kcal x mol(-1), whereas for the tetrahedral Pd4 cluster, the adsorption energy is -13.2 kcal x mol(-1). The latter value is close to experimental findings (-12 to -14 kcal x mol(-1)). Adsorption of formaldehyde on Pd4 supported on an Al10O15 cluster leads essentially to the same result as that found for adsorption on the tetrahedral Pd4 cluster. Charge density analysis for the interaction between formaldehyde and the Pd4 clusters indicates strong backdonation in the eta(2) adsorption mode, leading to positive charge on the Pd4 cluster. NBO analysis shows that the highly coordinated octahedral aluminum atoms of Al10O15 donate electron density to the supported Pd4 cluster, while tetrahedral aluminum atoms with lower coordination number have acidic nature and therefore act as electron acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号