首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
低温下 Fe(Ⅱ)对Ferrihydrite相转化的催化作用研究   总被引:3,自引:0,他引:3  
刘辉  魏雨  孙予罕 《化学学报》2005,63(5):391-395
研究了在低温、近中性条件下,在微量Fe(Ⅱ)离子存在下Ferrihydrite(又称为水合氧化铁hydrous iron oxide)的相转化过程.结果表明,微量Fe(Ⅱ)离子的存在不仅可以加速Ferrihydrite的相转化过程,而且其相转化产物的组成也与没有Fe(Ⅱ)离子存在时产物的组成有所不同,即除了α—FeOOH和α—Fe2O3外,还形成了γ-FeOOH;相转化过程既与阴离子的种类、反应温度、反应时间等因素有关,也与Fe(Ⅱ)离子存在状态有关;Fe(Ⅱ)离子通过催化Ferrihydrite的溶解过程,从而加速整个相转化过程.对该过程的深入研究将对认识和了解自然条件下铁氧化物的形成与相互转化具有重要意义.  相似文献   

2.
Influence of Ag(Ⅰ), Co(Ⅱ) and Ni(Ⅱ) ions on oxygen anodic evolution at Pt and Ti/Pt/PbO2 electrodes was investigated in surphuric acid solutions. The oxygen evolution reaction at Ti/Pt/PbO2 electrode in surphuric acid solutions is characterized by two linearφ~ lgi relationships. At low c.d. it is close to 2.303RT/(1+β)F, whereas at high c.d. it is close to 2.303RT/βF. In the presence of Ag(Ⅰ) or Ni(Ⅱ) ions in the electrolytic solution the Tafel slope of oxygen evolution tends to be low, 2.303RT/(1+β)F (withβ=0.5). However, the oxygen evolution reaction at Pt electrodes in H2SO4 or CoSO4﹢H2SO4 solutions is characterized by one linearφ~ lgi relationship. The Tafel slope is close to 2.303RT/βF. In the presence of Ag(Ⅰ) or Ni(Ⅱ) ions in the electrolytic solution the Tafel slope of oxygen evolution tends to be low, 2.303RT/(1+β)F. The oxygen anodic evolution reactions are catalyzed by Ag(Ⅰ), Co(Ⅱ) and Ni(Ⅱ) ions in the electrolytic solution. When Ag(Ⅰ) or Ni(Ⅱ) was mixed with Co(Ⅱ), a promising catalyst for oxygen anodic evolution with higher catalyst activity than either of them alone was found. A comparison of the PbO2 electrode and the Pt electrode has also been given.  相似文献   

3.
朱敦如  齐丽  程慧敏  沈旋  卢伟 《化学进展》2009,21(6):1187-1198
自旋交叉配合物具有理想的分子双稳态,可用作新型的热开关、光开关和信息存储器件。本文对近三年来Fe(II)自旋交叉分子材料的重要研究进展进行了综述,主要讨论了转变温度在室温附近的Fe(II)自旋交叉配合物以及具有光致激发自旋态捕获(LIESST)效应和多功能的Fe(II)自旋交叉分子材料,并对Fe(II)自旋交叉分子材料的应用前景作了探讨。  相似文献   

4.
高浓度Fe3+盐溶液催化相转化制备均匀铁红胶粒   总被引:6,自引:0,他引:6  
  相似文献   

5.
研究采用Fe(II)(EDTA)螯合物/UV催化臭氧降解聚丙烯酰胺(PAM)溶液。考察Fe(II)(EDTA)螯合物/UV催化臭氧法对PAM溶液粘度、PAM去除率和可生化性的影响。研究表面活性剂对Fe(II)(EDTA)螯合物/UV催化臭氧工艺降低PAM粘度的影响,并探讨草酸对该工艺降解PAM溶液影响规律。研究结果表明,Fe(II)(EDTA)螯合物/UV催化臭氧法对PAM溶液降解效能良好,在15min内,PAM溶液粘度的可以降低57%,在120min后,PAM去除率可达75%,B/C从0.121提升到0.423。表面活性剂对Fe(II)(EDTA)螯合物/UV催化臭氧工艺降低PAM溶液粘度影响较小。草酸不利于Fe(II)(EDTA)/UV催化臭氧工艺去除PAM和降低PAM溶液粘度,这是因为草酸造成的酸性环境抑制了臭氧在水中的分解作用,从而导致草酸/Fe(II)(EDTA)/O3体系中PAM溶液的降粘效果和去除率低于Fe(II)(EDTA)/O3体系。  相似文献   

6.
合成了一种新型三元铁基合金催化剂Fe(Pd)P, 通过X射线粉末衍射(XRD)、等离子体发射(ICP)和扫描电子显微镜(SEM)等手段对催化剂进行了表征. 将其应用于催化PH_3分解的实验, 初步探讨了催化反应条件. 结果表明: 三元铁基合金催化剂Fe(Pd)P具有很好的热稳定性及很高的催化活性, 使用此催化剂在420 ℃, 磷化氢的实际分解率可高达90%以上.  相似文献   

7.
蒋雄 《物理化学学报》1993,9(1):129-133
研究Co~(2+)离子的阴极还原,主要是由于钴的湿法冶金和电镀生产的需要,以及理论研究上的兴趣.研究表明,钴离子的阴极还原过程是复杂的,很大程度上取决于电解液的酸度.Simonova 和Rotinyan 根据pH=2.5-4的实验数据,提出了二电子还原和分步还原平行进行的钴还原机理,用以解释85—150mV 的塔费尔斜率,这实际上反映了酸度对钴还原的影响.Epelboin 和Wiart 根据阴极极化特征和阻抗分析,认为Co~(2+)离子还原时可能  相似文献   

8.
VA族元素对阳极铅(II)氧化物膜半导体性质的影响(II)   总被引:1,自引:0,他引:1  
用光电化学电流法研究了铅、铅砷、铅锑和铅铋合金在4.5 mol·L~(-1) H_2SO_4溶液(22 ℃)中,以0.9 V(vs.Hg/Hg_2SO_4)极化7 h而形成的阳极膜中的氧化铅的半导体性质,合金添加剂砷、锑和铋对t-PbO(四方氧化铝)和o-PbO(斜方氧化铝)的禁带宽度没有影响,从量子效率和电位的关系可求Pb,Pb-lat%As(at%表示原子百分比,全文同),Pb-lat%Sb和Sb-lat%Bi上膜中t-Pbo的施主密度(N_D)分别为9.3×10~(15),1.0×10~(16),3.1×10~(16)和1.3×10~(17) cm~(-3),平带位分别为-0.20,-0.22,-0.28和-0.08 V(vs.Hg/Hg_2SO_4).比较VA元素砷、锑和铋对上述膜中t-PbO的N_D(从而自由电子密度)和膜中t-PbO的生长速率的影响,可认为法添加剂砷、锑和铋对阳极膜中t-PbO的作用符合Hauffe规则.  相似文献   

9.
用模板法合成了1个大环金属铜(II)配合物[CuLCl2]·3H2O (1)和3个大环金属镍(II)配合物[NiLCl2] (2),[NiL](ClO4)2 (3)和[NiLH2](ClO4)4 (4)(L=3,10-二乙基-1,3,5,8,10,12-六氮杂十四烷),通过X-射线衍射单晶结构分析测定了它们的晶体结构。晶体结构显示:配合物12的金属离子与大环配体的4个氮原子及大环平面轴向的2个氯离子以八面体配位方式配位;配合物34的金属离子与大环配体的4个氮原子以平面正方形配位方式配位,配合物4的侧链氮原子的质子化导致侧链结构翻转,使得其侧链与大环平面共面。  相似文献   

10.
利用同步荧光光谱技术,研究了pH为10.0时,Cu2+离子与明胶的相互作用,推导出含有n个键合位置的明胶大分子与Cu2+离子的结合公式;用明胶中两种荧光基团的荧光强度变化数据,线性拟合出Cu2+离子与明胶的结合常数K和结合位点数n.讨论了Cu2+离子对明胶分子构象的影响.非线性拟合结果与实验值相当吻合.  相似文献   

11.
Formation and thermal stability of the Fe/ZnO(000‐1) interface have been studied by means of X‐ray photoelectron spectroscopy and low energy electron diffraction. The results indicated a pseudo 2D growth mode for iron on ZnO. In addition, it could be shown that under ultra high vacuum conditions deposited Fe0 on a ZnO(000‐1) single crystal was partially oxidized by a small fraction of residual ? OH‐groups and ZnO to FeO. A strong temperature dependence of the interface reactivity was found upon annealing at temperatures up to 600 °C. Starting from 200 °C iron was first oxidized to bivalent iron oxide. After complete oxidation of Fe0 to Fe2+ at 375 °C, Fe2+ reacted to Fe3+. Above temperatures of 500 °C the deposited metallic iron was completely oxidized to trivalent iron. Further experiments with FeO on ZnO showed the oxidation state and the oxide film thickness of the deposited iron to be mainly dependent on the annealing temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The comparative study on the photophysical properties between cheap metal Fe (II) complexes and noble metal Ru (II) complexes with identical ligand coordination is performed by the combination of density functional theory (DFT) and time-dependent density functional theory (TDDFT) to evaluate the potential alternative applications of Fe (II) complexes. RuBIP (BIP = 2,6-bis (imidazol-2- ylidene)pyridine) is theoretically established that the radiative lifetime of the second lowest triplet state is more consistence with experimental value. However, FeBIP retains nonluminous because of low-lying 3MC originated from weak d orbital splitting. FeBIPC (FeBIP with carboxylic acid groups) has twice longer lifetime than its parent complex FeBIP due to the great decrease of the energy gap between 3MLCT and 3MC. What's more, the lifetimes of Fe (II) complexes detected in the experiments are more accessible to nonradiative decay lifetimes of 3MC. The carboxylic acid groups are beneficial for the improvement of luminescent possibility and controllability of Fe (II) complexes, while there is still a huge challenge for effective material replacement comparing with Ru (II) complexes.  相似文献   

13.
The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO3) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH ≅ 3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05–4.0 and 0.09–6.0 mg L−1, respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.  相似文献   

14.
The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength λ = 530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic “cut off” peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 22 factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L−1 of both analytes, respectively.  相似文献   

15.
A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of cobalt(II) oxide (CoO) in deoxygenated ammonium and sodium hydroxide solutions between 22 and 288°C. Co(II) ion activity in aqueous solution was controlled by a hydrous Co(II) oxide when nitrogen was used for deoxygenation and by metallic cobalt when hydrogen was used. Measured cobalt solubilities are interpreted using a Co(II) ion hydroxo- and amminocomplexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A common set of thermodynamic properties for the species Co(OH)+, Co(OH)2(aq) and Co(OH)(NH3)+ is provided to permit accurate cobalt oxide solubility calculations over broad ranges of temperature and alkalinity.  相似文献   

16.
The title compound was prepared by treating iron(0) or pentacarbonyl-iron(0) containing Y zeolite with the appropriate complexant. Because of steric hindrance, the phthalocyanine guest molecule, turns out to be encapsulated within the zeolite cavity.  相似文献   

17.
Two-line ferrihydrite was prepared by two different procedures. In procedure 1, which is widely used, ferrihydrite (named as ferrihydrite-1) was prepared by droping NaOH solution into Fe(III) solution. In procedure 2, which is rarely reported, ferrihydrite (named as ferrihydrite-2) was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. The results showed that mixing procedures of Fe(III) and alkaline were critical in the sub-microstructures and the conversion mechanisms of ferrihydrites in the presence or absence of trace Fe(II). The sub-microstructure of ferrihydrite-1 favored the mechanism of its dissolution re-crystallization and hematite nanoparticles with rough surface were obtained. The sub-microstructure of ferrihydrite-2 favored the solid state transformation from ferrihydrite to hematite and hematite nanoparticles with smooth surface were formed. These research results will be helpful for us to control the synthesis of hematite nanoparticles with different surface state.  相似文献   

18.
An amide-imine conjugate, (E)-N′-((2-hydroxybenzen-1-yl) methylene)-4-methylbenzohydrazide (H2LPTASAL), derived from 4-methyl-benzoic acid hydrazide (PTA) and 2-hydroxybenzaldehyde is used to prepare Mo (VI), Cu (II) and Fe (III) complexes. The X-ray structurally characterized complexes have been explored as catalyst for amine assisted asymmetric ring opening (ARO) of epoxide, carbon-heteroatom cross-coupling and ethyl benzene oxidation. In addition, their catecholase like activities have thoroughly been investigated. Moreover, the Cu (II) complex selectively recognizes histidine by fluorescence spectroscopy.  相似文献   

19.
A stereoselectivity switchable polymerization of isoprene has been developed, which is catalyzed by iminoimidazole‐Co(II) and ‐Fe(II) complexes. The influence of substituents ranging from electron donating to the electron withdrawing on the iminoimidazole‐Co(II) and ‐Fe(II) catalysts is investigated for isoprene polymerization. Two sets of iminoimidazole‐Co(II) and ‐Fe(II) complexes have been prepared and fully characterized. X‐ray crystallography analysis reveals that the complexes Co1 and Fe1 adopt distorted tetrahedral geometries. In the presence of AlEt2Cl as co‐catalyst, all the Co(II) complexes are active and the catalytic activity is highly dependent on the molar ratio of Al/Co. All the Co(II) complexes exhibit higher activities at low Al/Co ratio. Compared with the Co(II) complexes, the Fe(II) complexes are essentially inactive under the identical condition. However, on activation with combination of AlEtCl2 and [Ph3C][B(C6F5)4], both Co(II) and Fe(II) complexes display high activities with good conversions of isoprene (up to >99%). Additionally, low molecular weight and high trans‐1,4‐unit (>96%) selectivity are characteristics of the resultant polyisoprene. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 767–775  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号