首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface-cleaning effect of metals was investigated using KrF-excimer-laser irradiation of metal surfaces in air. The laser-induced cleaning of copper, stainless steel and aluminum surfaces was studied. It is found that laser cleaning is an effective cleaning process for metals even if the metal surfaces are heavily contaminated. It is also found that short wavelength and pulse duration are necessary for laser surface-cleaning. The energy density of the laser pulse is an important parameter in the cleaning process. Low energy density results in a cleaner surface but a larger pulse number is required, whereas high energy density can achieve higher cleaning efficiency but the temperature rise can cause surface oxidation and secondary contamination. In contrast to the KrF-excimer-laser, the pulsed CO2 laser is not effective in surface-cleaning. The mechanisms of laser cleaning may include laser photodecomposition, laser ablation and surface vibration due to the impact of the laser pulse. Laser cleaning provides a new dry process to clean different substrate surfaces and can replace the conventional wet cleaning processes such as ultrasonic cleaning with CFC and other organic solvents.  相似文献   

2.
The dynamics of laser-induced plasma/shockwave and the interaction with a surface in the laser shock cleaning process are analyzed by optical diagnostics. Shockwaves are generated by a Q-switched Nd:YAG laser in air or with N2, Ar, and He injection into the focal spot. The shock velocity is measured by monitoring the photoacoustic probe–beam deflection signal under different conditions. In addition, nanosecond time-resolved images of shockwave propagation and interaction with the substrate are obtained by the laser-flash shadowgraphy. The results reveal the effect of various operation parameters of the laser shock cleaning process on shockwave intensity, energy-conversion efficiency, and flow characteristics. Discussions are made on the cleaning mechanisms based on the experimental observations. PACS 81.65.Cf; 42.62.-b; 47.40.Nm  相似文献   

3.
In the high power laser facility, surface contaminations on the optics will worsen the laser beam quality and damage the optics. Particle and grease contaminations are two of the usual contaminations on the surface of optics. In this work, the 1064-nm laser induced plasma shockwave cleaning is utilized to remove SiO2 particle contaminations on the K9 glass surface. The results indicate the removal ratio can reach above 95%. The effects of parameters (particle position, laser gap distance and laser energy) on the cleaning efficiency have been studied in the case of single pulse laser cleaning. In addition, CO2 laser (10.6 μm) is utilized to remove the dimethylsilicone oil contaminations on the gold-coated K9 glass surface. The results show that CO2 laser can effectively remove the dimethylsilicone oil by properly controlling the laser parameters. The cleaned area increases with the increased laser power or irradiation time when the other parameters are constant.  相似文献   

4.
Laser cleaning experiments exhibited a higher cleaning efficiency of the laser cleaning upon application of electrochemical potential on an oxidised iron surface. The objective of this study is to clarify the role of such an electrochemical control on cleaning efficiency. Therefore a study by optical spectrometry at normal incidence in the relevant conditions was performed. From these measurements the optical parameters n and k were deduced. While n is mainly not affected, k changes for a factor of 10 upon application of an electrochemical potential. These results explain the differences in laser cleaning efficiency due to the modified absorption length.  相似文献   

5.
A Nd:YAG laser (1064 nm) induces optical breakdown of the airborne above the gold-coated K9 glass surface and the created shockwave removes the SiO2 particles contaminated on the gold films. The laser cleaning efficiency has been characterized by optical microscopy, dark field imaging, ultraviolet-visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the Image-pro software. The relationships between removal ratio and particle position and laser gap distance have been studied in the case of single pulse laser cleaning. The results show that the 1064 nm laser induced plasma shockwave can effectively remove the SiO2 particles. The removal ratio can reach above 90%. The effects of particle position and laser gap distance on the cleaning efficiency are simulated for the single pulse laser cleaning. The simulated results are consistent with the experimental ones.  相似文献   

6.
A technique for all-optical laser cleaning and surface quality monitoring of concave metal surfaces is suggested. Contaminated pharmaceutical punches from a tablet compression machine were cleaned using high-energy laser pulses. Image information obtained from a diffractive-optical-element-based sensor was used in inspection of the surface quality change of the concave punches due to laser cleaning. Alternative method for mechanical cleaning of punches is introduced, which is based on simultaneous laser cleaning and surface quality inspection of the punches.  相似文献   

7.
The aim of this paper is to study the laser-induced backside wet cleaning techniques for glass substrates. Two kinds of laser cleaning techniques are proposed in this study. The first involves applying an Nd:YAG laser to the backside of the substrate which is submerged in water. A metal plate is placed below the glass substrate. Most of the laser energy will be absorbed by the metal plate. The metal then vaporizes the water and generates a turbulent bubble flow. The bubble flow removes the alumina particles from the surface of the glass substrate. The second involves using a CO2 laser to generate turbulent bubble flow to remove the particles. Both methods were successfully demonstrated for the removal of submicron particles of 0.5 μm in size. The phenomena of bubble generation and diffusion are presented in the paper. Because the laser is applied to the backside of the substrate, the damage due to the laser heat can be significantly reduced. The quality and efficient of the backside processing is better than those of the front side processing. The proposed techniques have great potential to provide an improved solution for glass cleaning.  相似文献   

8.
用激光清洗金膜表面硅油污染物   总被引:2,自引:0,他引:2  
采用CO2激光对镀金K9玻璃表面的二甲基硅油污染物进行清洗,在激光器单点作用模式下,分别研究了激光功率和作用时间对清洗效果的影响;并研究了连续扫描工作模式下的激光清洗效果。采用光学显微镜和傅里叶变换红外光谱仪表征激光清洗效果,研究结果表明:通过良好的控制激光参数,采用CO2激光清洗二甲基硅油具有明显的效果;此种非接触式清洗方式可确保K9玻璃表面的金膜完好无损。采用有限元分析软件模拟计算了激光功率和作用时间对清洗过程中温度的影响,计算结果与实验结果规律一致。  相似文献   

9.
Pulsed laser assisted removal of uranium dioxide and thorium dioxide particulates from stainless steel surface have been studied using a TEA CO2 laser. Decontamination efficiency is measured as a function of laser fluence and number of pulses. Threshold fluence for the removal of UO2 particulates has been found to be lower than that required for the removal ThO2 particulates. Usage of a ZnSe substrate, that is transparent to the laser wavelength used here, enabled us to decouple the cleaning effect arising out of absorption in the particulates from that in the substrate and has contributed towards understanding the mechanism responsible for cleaning. The experimental observations are also corroborated by simple theoretical calculations.  相似文献   

10.
铝合金焊接技术在工业生产、制造和维修等领域有广泛的应用,焊缝内存在气孔导致焊接质量降低是铝合金焊接技术的常见问题。由于铝合金表面金属氧化物是导致气孔生成的主要来源,对激光清洗过程进行在线检测,不但可以实时分析表面氧化物的清洗状态,而且可以避免基体表面因为过度清洗造成损伤或二次氧化。提出采用激光诱导等离子体光谱(LIBS)在线检测铝合金焊前激光清洗过程,表征清洗后铝合金基体的表面状态。LIBS技术可以对多元素成分同时检测,拥有较低的检出限和较高的准确性。搭建基于Andor Mechelle 5000光谱仪的铝合金焊前激光清洗在线检测系统,剔除空气环境对实验结果的影响,测试6061铝合金表面氧化物和铝合金基体的LIBS光谱,分析两者独特的元素特征谱线,采用X射线能谱(EDS)测试结果验证元素特征谱线的准确性,并探讨激光清洗过程LIBS技术在线检测的可行性。实验测试等离子体光谱谱线强度与激光能量密度之间的关系,获得单次脉冲激光去除铝合金表面氧化物的损伤阈值,结合X射线能谱的检测结果研究激光损伤阈值的成因及影响。研究激光清洗过程等离子体光谱特征谱线与脉冲次数之间的关系,提出基于O/Al特征谱线强度比值作为在线检测清洗效果及二次氧化损伤的评判依据。为验证该评判依据的准确性,将O/Al特征谱线强度比值随清洗次数的变化趋势与X射线能谱测试获得的氧元素原子百分比变化趋势进行对比。实验结果表明:采用200~700 nm范围内激光诱导等离子体谱线特征分析激光清洗状态,可以剔除空气环境的影响;氧元素和铝元素特征谱线准确反映出表面氧化膜与铝合金基体的成分差异;X射线能谱检测元素成分和含量表明氧元素含量随着激光清洗能量密度先减后增,单次清洗铝合金的二次氧化损伤的激光能量阈值为11.46 J·cm-2,小于损伤阈值的激光能量密度对铝合金基体的多次清洗未造成损伤,等离子体光谱特征谱线强度与表面清洗状态相关, 656.5 nm(OⅡ)/396.2 nm(AlⅠ)谱线强度比值≤1.5%为激光清洗干净的依据。研究结果有利于铝合金的激光清洗实时控制技术和焊接装置集成化。  相似文献   

11.
In order to effectively remove the surface paint of the cultural relic of white marble, the area extrapolation method and laser-induced plasma spectroscopy (LIPS) method were used to obtain the ablation threshold power of the gold, silver paint layer and white marble surface. On the basis of this, the optimal laser power for removing paint without damaging the white marble substrate was determined. The image processing method was used to study the cleaning degree and variation trend of cleaning rate of the gold and silver paint on the surface of 10 mm×10 mm white marble by laser cleaning, and the optimal laser spot overlap rate and the optimal cleaning times were obtained. Finally, the image processing method was used to evaluate the cleaning effect of laser cleaning of paint layer on the white marble surface. More than 93% of the cleaning degree shows that the synergistic use of the area extrapolation method, LIPS method and image processing method can effectively improve the laser cleaning efficiency of the paint layer on white marble surface. Copyright ©2022 Journal of Applied Optics. All rights reserved.  相似文献   

12.
The effect of low-pressure hydrogen and oxygen plasma cleaning of Au and PtIr was investigated by X-ray photoelectron spectroscopy. Hydrocarbon contamination was efficiently removed by hydrogen and oxygen plasma. Hydrogen plasma additionally reduces oxygen compounds, especially metal oxides, while oxygen plasma results in the formation of a surface layer of Au2O3 and PtO, respectively. Both noble metal oxides are unstable and decompose with time. The decomposition of metal oxides occurs in parallel with the recontamination of the surface. Metal oxides can be removed completely for Au and partially for PtIr by an additional cleaning with hydrogen plasma. Hydrogen plasma treatment is very promising for noble metal surface cleaning.  相似文献   

13.
This paper is to investigate the mechanisms of micro-scale particle removal by surface wave, which was induced by a short pulse laser in a cleaning process. The authors analyzed the adhesive forces of particles on substrate surface and the clearance force produced by surface wave in laser cleaning. The physical model of particle removal by laser-induced surface wave was established to predict the removal area and the processing conditions of laser cleaning. In this research, a KrF excimer laser was applied to irradiate 304 stainless steel specimen distributed with copper particles to generate surface wave for copper particle removal. Considering that a time-varying and uniformly distributed heat source irradiates on material surface with thermao-elastic behavior, the displacement and acceleration of substrate induced by a pulsed laser were solved by an uncoupled thermal–mechanical analysis based on the finite element method. The processing parameters such as laser energy, laser spot size are discussed, respectively. A series of laser cleaning experiments were designed to compare with computation results. The results show that the removal area by surface wave beyond the laser spot increases with the laser energy and that, the surface acceleration decreases with the increase of the laser spot size.  相似文献   

14.
Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.  相似文献   

15.
Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 m, an Er:YAG laser at 2.94 m, and a 2-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure. PACS 42.55.-f; 42.55.Ah; 81.05.Bx.  相似文献   

16.
Pulsed laser cleaning was demonstrated to be an efficient way for removing submicron particles from the nickel-phosphorus (NiP) surface both experimentally and theoretically. Experimentally, it is found that using KrF excimer laser with a pulse width of 23 ns the cleaning threshold is about 20 mJ / cm2 for removing quartz particles from the NiP surface and laser cleaning efficiency increases rapidly with increasing laser fluence. The theoretical analysis shows that the peak cleaning force (per unit area) is larger than the adhesion force (per unit area) for submicron quartz particles on the NiP surface when it is irradiated by excimer laser with a fluence above 10 mJ / cm2. Therefore, it is possible to remove submicron quartz particles from NiP surfaces by laser irradiation. The difference between the cleaning force (per unit area) and the adhesion force (per unit area) increases with increasing laser fluence, leading to a higher cleaning efficency for quartz particles on the NiP surface.  相似文献   

17.
Study of the buckling mechanism in laser tube forming   总被引:1,自引:0,他引:1  
The buckling mechanism of a thin metal tube during laser forming was investigated numerically and experimentally in this study. Metal tubes made of 304 stainless steel were heated by a CO2 Gaussian laser beam, which induced the buckling phenomenon on the tube surface due to elastic–plastic deformation. This uncoupled thermal–mechanical problem was solved using a three-dimensional finite element method and was subsequently satisfactorily verified with displacement measurements. The transient bending angle and residual stress of the thin metal tube under specific operation conditions were also studied.  相似文献   

18.
Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H2O2) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH3COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 °C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.  相似文献   

19.
Multimode Nd:YAG pulse laser was applied to remove micron and submicron particles by vaporizing a thin paint film pre-coated on super-smooth optical substrate surface. By analyzing the poor absorption of the optical glass substrate to the irradiative Nd:YAG pulse laser, the removal mechanism of contaminated colloidal particles from the super-smooth surface through vaporization of a volatile solid film is described. A limit analysis was proposed to determine the lower and the upper threshold of laser fluence for cleaning the SiO2 contaminants from super-smooth K8 optical substrate. Relevant experiments on laser cleaning of micron-polishing particles from super-smooth K8 optical substrate confirmed the usefulness of this method in assisting the selection of effective cleaning fluence for accomplishing high cleanliness, which was in a range of 80–90% of the predicted upper threshold.  相似文献   

20.
The paper compares laser cleaning trials performed using a Q-switched Nd:YAG laser, λ = 1.064 μm and a continuous wave (CW) CO2 laser, λ = 10.6 μm, applied to aerospace-grade, contaminated titanium alloys. The mechanisms for cleaning using each laser system are modelled to determine the mode and extent of contaminant removal. The model results are then compared with the surface chemistry and micro-structural results from the cleaning trials performed. The results show the dominant cleaning process for Nd:YAG cleaning to be by evaporation of the contaminant via conduction through surface heating, while for CO2 laser cleaning the small fraction of the beam coupling directly with the contaminant is sufficient for direct heating and selective evaporation. The results for experimental cleaning, electron beam (EB) welding and diffusion bonding align well with the model, particularly when secondary reactions are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号