首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

3.
廖杰  赵玉兰  董芳霆  杨军  郝秀华 《色谱》1999,17(5):491-492
建立了分离逆转录聚合酶链反应(RT PCR)产物的高效液相色谱方法,反应液直接进样,用TSKgelDEAE NPR柱分离,Tris HCl缓冲溶液(pH90) 氯化钠线性梯度洗脱,于260nm处检测。用所建立的方法分析了大鼠肠缺血/再灌注损伤后外周血中性粒细胞(PMN)磷脂酶A2mRNA的表达。  相似文献   

4.
E Gottwald  O Müller  A Polten 《Electrophoresis》2001,22(18):4016-4022
We have applied a method to monitor mRNA expression in a semiquantitative fashion on the Agilent 2100 Bioanalyzer. The method was originally described in 1994 by Wong et al. and referred to as the "primer-dropping" method. This polymerase chain reaction (PCR) technique uses multiple sets of primer pairs in a coamplification reaction that amplifies the target of interest within a predetermined range specific for each target. Separation, detection and quantification of PCR products were accomplished using the Agilent 2100 Bioanalyzer in conjunction with the DNA 500 and the DNA 1000 Lab-Chip kits for the detection of DNA fragments with a maximum size of 500 and 1000 bp, respectively. Using primers specific for the inducible form of hsp72 and primers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal standard we were able to rapidly monitor and quantify inducible hsp72-mRNA expression.  相似文献   

5.
6.
It has been recently demonstrated that single-stranded DNA-binding protein (SSB) can facilitate quantitative analyses of DNA, RNA, and proteins in gel-free capillary electrophoresis (CE). Here, we report the application of SSB-mediated gel-free CE for analyses of polymerase chain reaction (PCR) products. The unique ability of SSB to bind ssDNA but not double-stranded DNA (dsDNA) allows efficient separation of three types of DNA molecules in the PCR reaction mixture: primers, products (amplified templates), and by-products, which originate from non-specific DNA hybridization. SSB-mediated gel-free CE analysis of PCR products combines simplicity, high sensitivity, and outstanding quantitative capabilities. The ability of the method to distinguish between products and by-products makes this method an indispensable tool in preparative PCR (e.g., in the development of nucleotide aptamers).  相似文献   

7.
DNA is widely used as a target for GMO analysis because of its stability and high detectability. Real-time PCR is the method routinely used in most analytical laboratories due to its quantitative performance and great sensitivity. Accurate DNA detection and quantification is dependent on the specificity and sensitivity of the amplification protocol as well as on the quality and quantity of the DNA used in the PCR reaction. In order to enhance the sensitivity of real-time PCR and consequently expand the number of analyzable target genes, we applied a preamplification technique to processed foods where DNA can be present in low amounts and/or in degraded forms thereby affecting the reliability of qualitative and quantitative results. The preamplification procedure utilizes a pool of primers targeting genes of interest and is followed by real-time PCR reactions specific for each gene. An improvement of Ct values was found comparing preamplified vs. non-preamplified DNA. The strategy reported in the present study will be also applicable to other fields requiring quantitative DNA testing by real-time PCR.  相似文献   

8.
9.
10.
数字聚合酶链式反应(digital polymerase chain reaction,dPCR)技术可以针对低浓度的目标核酸分子实现精确的绝对定量检测,在各类疾病的检测与治疗方面有着极大应用价值. 针对目前商业数字PCR仪造价昂贵、体积庞大等缺点,基于智能手机与微流控芯片,设计开发了一种低成本、高集成的智能数字PCR设备. 介绍了硬件系统的制作以及整机的整合搭建过程. 采用PID算法,结合温控电路与半导体制冷片等硬件,进行了PCR温度循环的精准控制. 最后,采用自适应阈值分割法对采集到的荧光图像进行了处理,并依据泊松分布的规律对统计结果进行了校正,完成了对PCR反应后采集到荧光图像的结果分析与检测.  相似文献   

11.
We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.  相似文献   

12.
The analysis of quantitative PCR data usually does not take into account the fact that the increase in fluorescence depends on the monitoring chemistry, the input of ds-DNA or ss-cDNA, and the directionality of the targeting of probes or primers. The monitoring chemistries currently available can be categorized into six groups: (A) DNA-binding dyes; (B) hybridization probes; (C) hydrolysis probes; (D) LUX primers; (E) hairpin primers; and (F) the QZyme system. We have determined the kinetics of the increase in fluorescence for each of these groups with respect to the input of both ds-DNA and ss-cDNA. For the latter, we also evaluated mRNA and cDNA targeting probes or primers. This analysis revealed three situations. Hydrolysis probes and LUX primers, compared to DNA-binding dyes, do not require a correction of the observed quantification cycle. Hybridization probes and hairpin primers require a correction of ?1 cycle (dubbed C-lag), while the QZyme system requires the C-lag correction and an efficiency-dependent C-shift correction. A PCR efficiency value can be derived from the relative increase in fluorescence in the exponential phase of the amplification curve for all monitoring chemistries. In case of hydrolysis probes, LUX primers and hairpin primers, however, this should be performed after cycle 12, and for the QZyme system after cycle 19, to keep the overestimation of the PCR efficiency below 0.5 %. Figure
The qPCR monitoring chemistries form six groups with distinct fluorescence kinetics. The displacement of the amplification curve depends on the chemistry, DNA input and probe-targeting. The observed shift in Cq values can be corrected and PCR efficiencies can be derived.  相似文献   

13.
14.
Huang X  Hou L  Xu X  Chen H  Ji H  Zhu S 《The Analyst》2011,136(20):4254-4259
Traditional real-time polymerase chain reaction (PCR) requires a purified DNA sample for PCR amplification and detection. This requires PCR tests be conducted in clean laboratories, and limits its applications for field tests. This work developed a method that can carry out DNA purification, amplification and detection in a single PCR tube. The polypropylene PCR tube was first treated with chromic acid and peptide nucleic acids (PNA) as DNA-capturer were immobilized on the internal surface of the tube. Cauliflower mosaic virus 35S (CaMV-35S) promoter in the crude extract was hybridized with the PNA on the tube surface, and the inhibitors, interfering agents and irrelevant DNA in the crude extract were effectively removed by rinsing with buffer solutions. The tube that has captured the target DNA can be used for the following real-time PCR (RT-PCR). By using this approach, the detection of less than 2500 copies of 35S plasmids in a complex sample could be completed within 3 hours. Chocolate samples were tested for real sample analysis, and 35S plasmids in genetically modified chocolate samples have been successfully identified with this method in situ. The novel One-PCR-tube method is competitive for commercial kits with the same time and simpler operation procedure. This method may be widely used for identifying food that contains modified DNA and specific pathogens in the field.  相似文献   

15.
Polymerase chain reaction (PCR) is an important diagnostic tool for the amplification of DNA. The PCR process can be treated as a problem in biochemical engineering. This study focuses on the development of a mathematical model of the polymerase chain reaction. The PCR process consists of three steps: denaturation of target DNA, annealing of sequence-specific oligonucleotide primers and the enzyme-catalyzed elongation of the annealed complex (primer:DNA:polymerase). The denaturation step separates the double strands of DNA; this model assumes denaturation is complete. The annealing step describes the formation of a primer-fragment complex followed by the attachment of the polymerase to form a ternary complex. This step is complicated by competitive annealing between primers and incomplete fragments including primer-primer reactions. The elongation step is modeled by a stochastic method. Species that compete during the elongation step are deoxynucleotide triphosphates dCTP, dATP, dTTP, dGTP, dUTP, and pyrophosphate. Thermal deamination of dCTP to form dUTP is included in the model. The probability for a species to arrive at the active site is based on its molar fraction. The number of random insertion events depends on the average processing speed of the polymerase and the elongation time of the simulation. The numerical stochastic experiment is repeated a sufficient number of times to construct a probability density distribution (PDF). The moment of the PDF and the annealing step products provide the product distribution at the end of the elongation step. The overall yield is compared to six experimental values of the yield. In all cases the comparisons are very good.  相似文献   

16.
A label-free and non-enzymatic amplification fluorescent method for detection of DNA has been developed by using hybridization chain reaction (HCR) and dsDNA-templated copper nanoparticles (CuNPs). First, the biotinylated capture DNA probes were immobilized on the streptavidin-modified beads through the interaction of biotin and streptavidin. Then, target DNA hybridized with the capture DNA probes, which formed a hybridized DNA with sticky end. The sticky end triggered the HCR process and formation of dsDNA polymers while two hairpin probes coexisted. Subsequently, the dsDNA polymers were employed as template for synthesis of CuNPs with excellent fluorescent properties, which provided a label-free, non-enzymatic signal response. Meanwhile, the fluorescence sensing depended on the target DNA triggered HCR, which render this method a high selectivity against single-base mismatch sequences. The concept and methodology developed in this work show great promise in the quantitative detection of DNA in biological and medical applications.  相似文献   

17.
Vaccination against Helicobacter pylori using DNA sequences encoding Urease A and B subunits was compared to immunization with urease antigen and MTP-PE in a liposome formulation. To determine the effectiveness of a vaccine against H. pylori in a mouse model it is essential to quantify the number of H. pylori remaining in the stomachs following challenge with an inoculum of live bacteria. Culture assays and enzymatic assays produce inconsistent results often unsuitable to conclude if vaccine candidates are protective. To overcome this problem, we developed two assays: 1) a competitive quantitative PCR using a colorimetric readout and 2) a non-competitive direct quantitative PCR using a highly sensitive bioluminescent readout. The competitive PCR requires coamplification of a segment of the urease C sequence and an internal control standard in a competitive manner using a single set of primers. PCR products were quantified colorimetrically by an enzyme-linked immunosorbent assay and compared with known quantities of the internal control standard added to the PCR reaction. The highly sensitive, bioluminescent assay measures the amplified DNA directly using a flash-type luminescent tag and a specific probe. The Sydney strain of H. pylori was used for the mouse infection model. Quantification of H. pylori by either the bioluminescent assay or the competitive PCR was reliable, specific and sensitive compared to quantitative growth assays which often gave false results. The bioluminescent assay was much more sensitive and less labor/time intensive than the competitive PCR. The bioluminescent assay was able to quantitate as few as 100 bacteria, while the competitive assay could not detect less than 10(3) bacteria per mouse stomach. Quantification of H. pylori by bioluminescent assay was superior to the competitive assay and may be used for research applications, such as the development of vaccines, pathogenesis of gastric disease and monitoring of antibiotic treatment.  相似文献   

18.
Cao Z  Miao J  Zhu K  Lau C 《The Analyst》2011,136(19):3981-3987
Herein we report on the development of instantaneous derivatization technology for the homogeneous and simultaneous detection of multiple PCR amplicons specific to the Hepatitis B Virus (HBV) by using three carriers: magnetic beads, polystyrene beads, and thermo-sensitive poly-N-isopropylacrylamide (PNIP). Briefly, PCR amplicons are labeled with digoxin, biotin or FITC via the modified up-stream primers respectively. After PCR amplification, the immunoreactions occur between a mixture of three target PCR amplicons and three modified carriers with anti-digoxin antibody, streptavidin or anti-FITC antibody in a single vessel, and then each carrier is separated from the others under different conditions based on their physio-chemical attributes. And then direct CL detection proceeds via the instantaneous derivatization reaction between intrinsic guanine nucleobases and 3,4,5-trimethoxylphenylglyoxal (TMPG). This new protocol directly measures the double-stranded DNA and therefore does not require a denaturing step, thus offering an enhanced sensitivity due to the absence of competitive hybridization, i.e., the detection limit had a 20-fold improvement on the conventional PCR measurement. Additionally, by comparison of previous guanine based detection formats, this protocol is easy to be used for the detection of any guanine containing targets without the use of guanine-free or inosine-substituted capture probes. Overall, the proposed technique takes the advantages of sensitivity, high-speed and cost-effectivity, which provides a promising alternative for the analysis of multiple PCR targets in a variety of clinical, environmental, and biodefense fields.  相似文献   

19.
Homology probing by using mixed primers for polymerase chain reaction (PCR) and a subsequent sequence analysis by automated DNA sequencer were applied to determine a partial cDNA sequence of the iron-sulfur subunit of complex II (succinate-ubiquinone oxidoreductase). Complex II is a membrane-bound flavoenzyme, which catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle, and it is a component of the mitochondrial and bacterial respiratory chains. In this study, the partial amino acid sequence of iron-sulfur subunits in Caenorhabditis elegans mitochondria was deduced from the DNA sequence obtained from cDNA-PCR. Mixed oligonucleotide primers corresponding to two conserved regions which appear to be the binding site for the prosthetic group were used. The product of PCR was cloned into plasmid vector pUC 119 and the sequence was determined from double strand plasmid DNA by the dideoxy method using of one-dye, four-lane type the automated DNA sequencer (DSQ-1, Shimadzu). The PCR product contained 483 nucleotides and its deduced amino acid sequence was highly homologous with that in human liver (68.9%) and that of Escherichia coli sdh B product (50.3%). As expected, striking sequence conservation was found around the three cysteine-rich clusters which have been thought to comprise the iron-sulfur centers of the enzyme.  相似文献   

20.
Lysosomal alpha-mannosidase (EC 3.2.1.24) is an exoglycosidase in the glycoprotein degradation pathway and is encoded by a 3.0 kb cDNA. A 2.3 kb cDNA from a minor species of HeLa cell mRNA was discovered by RT-PCR cloning. Southern blotting and PCR analysis of the HeLa cell genomic DNA showed that the 2.3 kb message was encoded by the lysosomal alpha-mannosidase gene. Sequence comparison of the cDNA with the corresponding genomic DNA indicated that the 2.3 kb message was generated by an unusual intra-exonic joining event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号