首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus for phytoremediation, crop biofortification and food security research. Recent advances in X-ray focussing optics and fluorescence detection have greatly improved the potential to use synchrotron techniques in plant science research. With use of methods such as micro X-ray fluorescence mapping, micro computed tomography and micro X-ray absorption near edge spectroscopy, metal(loids) can be imaged in vivo in hydrated plant tissues at submicron resolution, and laterally resolved metal(loid) speciation can also be determined under physiologically relevant conditions. This article focuses on the benefits of combining molecular biology and synchrotron-based techniques. By using molecular techniques to probe the location of gene expression and protein production in combination with laterally resolved synchrotron techniques, one can effectively and efficiently assign functional information to specific genes. A review of the state of the art in this field is presented, together with examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. The article concludes with a summary of the technical challenges still remaining for synchrotron-based hard X-ray plant science research, particularly those relating to subcellular level research.  相似文献   

2.
Until recently, items of cultural heritage significance have been studied only using laboratory-based techniques. Improvements in the design of synchrotron radiation sources have made it possible to undertake experiments on objects of cultural heritage experience which had hitherto been impossible. Experimental techniques used in conservation science studies range from infrared microscopy to X-ray diffraction and fluorescence (both micro- and macro-diffraction), to small and wide angle X-ray scattering (SAXS/WAXS) (both micro- and macro-scattering). Here, we describe studies of important artefacts held by Australian national collecting agencies using both laboratory- and synchrotron-based analytical techniques and particle beam X-ray emission (PIXE). As well, a new technique for studying easel paintings, hyperspectral imaging, will be introduced.  相似文献   

3.
Soil samples collected in the surroundings of a chlor-alkali plant in the Netherlands were characterised by synchrotron-based techniques and conventional analytical procedures, in order to evaluate the environmental impact of Hg emissions and other heavy metals present in these locations. Analysis of total metal content by inductively coupled plasma-optical spectroscopy (ICP-OES) revealed a heterogeneous contamination of Hg, with concentrations ranging from 4.3 to 1150 μg g−1. In addition, significant concentrations of Cu, Ni, Pb, Zn, Mn and principally Fe were also identified within the studied samples. Direct determination of mercury species by X-ray absorption near edge spectroscopy (XANES) showed inorganic Hg compounds to prevail in all soils, being Cinnabar (HgSred) and Corderoite (Hg3S2Cl2) the main species. Nevertheless, more soluble mercury compounds, such as HgO and HgSO4, have been also identified in significant proportion (from 6 to 20% of total mercury content), indicating a potential risk of mercury mobilisation. On the other hand, the application of sequential extraction schemes (SES) revealed large portions of weakly available Hg extracted in the residual fraction, while Hg associated to the exchangeable phase amounts as much as 19% of total Hg, thus, supporting the results obtained by XANES.Finally, synchrotron-based micro X-ray fluorescence (μ-XRF) was applied to identify qualitative trends on elemental associations in sample particles through a systematic mapping of its surface. In this concern, results show a well-defined correlation between Hg and Cu/Ni in the analysed particles. On the other hand, an absence of correlation between Hg and several other elements (Fe, Ti, Ca, Zn, Mn and S) was also observed. These effects have been attributed to chemical and physical interactions of mercury species on both enriched particles and sample matrices.  相似文献   

4.
To develop a solid scientific basis for maintaining soil quality and formulating effective remediation strategies, it is critical to determine how environmentally-important trace metals are sequestered in soils at the molecular scale. The speciation of Mn, Fe and Cu in soil organic matter has been determined by synchrotron-based techniques: extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). We show the structural similarity between the surface complexes of Mn(II), Fe(III) and Cu(II). These cations are bound to the surface through oxygen atoms. Each one presents a more or less tetragonal-distorted octahedral geometry. The use of X-ray absorption spectroscopy provides a relevant method for determining trace-metal speciation in both natural and contaminated environmental materials.  相似文献   

5.
脑疾病的诊疗、 探索高级脑功能机制和理解意识本源对脑科学研究具有重要意义. 成像技术在阐明脑科学神经系统结构和功能中发挥了重要作用. 迄今, 核磁共振成像、 光学成像和电子显微镜成像技术已为脑科学研究提供了强有力的手段, 取得了突出的进展. 同步辐射X射线显微成像技术具有高分辨率、 快成像速度和高穿透深度等优点, 是一类与已有技术互补的新型脑成像技术. 本文介绍了核磁共振波谱、 光学显微镜和电子显微镜等成像方法在脑成像领域中的应用, 重点阐述了同步辐射X射线成像的优势以及在脑结构成像和功能成像中的应用. 在此基础上, 展望了同步辐射X射线成像应用于脑科学研究的未来发展方向, 讨论了该技术在绘制人脑联接图谱中的优势及可行性.  相似文献   

6.
Hydrogen-bonded Organic Frameworks (HOFs) are an appealing, newly emerging classes of porous materials whose bright potential as multifunctional resources is reflected in important applications like gas storage and separation, molecular recognition, electric and optical materials, chemical sensing, catalysis, and biomedicine. HOFs are assembled from organic building blocks through H-bonding interactions. The resultant framework can be further reinforced via weak connections such as π-π, van der Waals, and/or C-H-π interactions. The highly flexible and reversible HOF structures are exceptionally suitable for the realization of smart HOF materials. To this end, it is crucial to unravel and control the photobehavior of these compounds at intimate levels by the use of advanced laser-based spectroscopy and microscopy techniques. The use of light to study the photophysical processes of HOF-based systems will help to trigger further research to expand their applicability in the related fields. This Review surveys the past-10-years contributions on the spectroscopy and photoinduced fast/ultrafast dynamics of HOFs, the interactions between their building units, the effect of light on their photostability, and most important photonic applications. The aim of this work is to give a rich up-to-date summary of photochemistry and related applications of HOFs and their composites. The reviewed HOFs have been divided into different families based on the nature of the linker, with the purpose of offering to the reader a concise understanding of the related photoinduced processes within each family. The relevant applications of HOFs are also briefly summarized to validate their potential use in modern science and technology.  相似文献   

7.
Chemical reactions occurring at the mineral–water interface are controlled by an interfacial layer, nanometers thick, whose properties may deviate from those of the respective bulk mineral and water phases. The molecular-scale structure of this interfacial layer, however, is poorly constrained, and correlations between macroscopic phenomena and molecular-scale processes remain speculative. The application of high-resolution X-ray scattering techniques has begun to provide substantial new insights into the molecular-scale structure of the mineral–water interface. In this review, we describe the characteristics of synchrotron-based X-ray scattering techniques that make them uniquely powerful probes of mineral–water interfacial structures and discuss the new insights that have been derived from their application. In particular, we focus on efforts to understand the structure and distribution of interfacial water as well as their dependence on substrate properties for major mineral classes including oxides, carbonates, sulfates, phosphates, silicates, halides and chromates. We compare these X-ray scattering results with those from other structural and spectroscopic techniques and integrate these to provide a conceptual framework upon which to base an understanding of the systematic variation of mineral–water interfacial structures.  相似文献   

8.
This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field.  相似文献   

9.
随着人类对可持续能源的需求不断增长,先进的表征方法在能源材料研究等领域变得越来越重要。借助X射线成像技术,我们可以从二维和三维角度实时获取能源材料的形貌、结构和应力变化信息。此外,借助高穿透性X射线和高亮度同步辐射源,设计原位实验,可以获取充放电过程中样品的定性和定量变化信息。本文综述了基于同步加速器的X射线成像技术及其相关应用,讨论了包括X射线投影成像、透射式X射线显微成像、扫描透射X射线显微成像、X射线荧光显微成像以及相干衍射成像等几种主要的X射线成像技术在能源材料研究领域的应用,展望了未来X射线成像的应用前景及发展方向。  相似文献   

10.
The process of investigating paintings includes the identification of materials to solve technical and historical art questions, to aid in the deduction of the original appearance, and in the establishment of the chemical and physical conditions for adequate restoration and conservation. In particular, we have focused on the identification of several samples taken from six famous canvases painted by Pedro Atanasio Bocanegra, who created a very special collection depicting the life of San Ignacio, which is located in the church of San Justo y Pastor of Granada, Spain. The characterization of the inorganic and organic compounds of the textiles, preparation layers, and pictorial layers have been carried out using an XRD diffractometer, SEM observations, EDX spectrometry, FT-IR spectrometry (both in reflection and transmission mode), pyrolysis/gas chromatography/mass spectrometry and synchrotron-based μ-X-ray techniques. In this work, the advantages over conventional X-ray diffraction of using combined synchrotron-based μ-X-ray diffraction and μ-X-ray fluorescence in the identification of multi-layer paintings is demonstrated.  相似文献   

11.
Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.  相似文献   

12.
Graphene nanoplatelets have been applied as the support to electrodeposit monometallic Au and Pd nanoparticles as well as bimetallic Au–Pd nanoparticles. These nanoparticles have been characterized with scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical techniques. They are further utilized as the catalysts for electrochemical oxidation of hydrazine. The oxidation peak potential is − 0.35 and 0.53 V (vs. SCE) when monometallic Pd and Au nanoparticle are used as the catalysts. When bimetallic nanoparticles are applied as the catalyst, their composition affects the peak potential and peak current for the oxidation of hydrazine. Higher oxidation current is achieved when bimetallic Au–Pd nanoparticles with an atomic ratio of 3:1 are deposited on graphene nanoplatelets. Metal nanoparticle-loaded graphene nanoplatelets are thus novel platforms for electrocatalytic, electroanalytical, environmental, and related applications.  相似文献   

13.
Environmental methodologies are gaining recognition in this modern world. Environmental nanotechnology plays a major role in improving modern fields of environmental engineering and science. Metal oxide nanoparticles have exceptional properties due to their small size, including quantum confinement, surface-to-volume ratio, plasmon excitation, high biocompatibility, and surface modifiability. The biosynthesis of nanoparticles using fungi, bacteria, and plants through various biotechnological techniques is currently a new paradigm for environmental protection. Synthesis of nanoparticles through plant extract is good because it eliminates the dangers of toxic chemicals, it is environmentally friendly, simpler, and safer as the reaction time is reduced and it can also be increased in size for higher operation. The present study is based on the development of zinc oxide nanoparticles from papaya leaf extract where zinc nitrate is used as a precursor. The biosynthesized nanoparticles are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, energy-dispersive X-ray analysis, UV-visible spectroscopy, and dynamic light scattering analysis. The crystalline phase determination of the zinc oxide nanoparticles is analyzed by X-ray diffraction and the formation of polycrystalline zinc oxide nanoparticles is confirmed. FT-IR spectrum reveals the main functional groups and chemical information in zinc oxide nanostructures. Morphological analysis is performed using SEM at different magnification levels. EDAX analysis shows the purity of the composite samples. Optical characterization is performed using a UV–vis spectrophotometer. DLS analysis shows that the nanoparticles formed have a relatively well-defined dimension.  相似文献   

14.
Nanotechnology is an emerging field of science that has significant applications in applied sciences. In this study, silver nanoparticles (SNPs) were synthesized utilizing the leaf filtrate of Rubus ellipticus. SNPs were characterized using UV–visible spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction patterns to determine their morphology and chemical composition. The surface plasmon resonance of SNPs revealed a peak at 415 nm. The synthesized SNPs were mainly spherical crystals with an average size of 21.43 nm. When compared to plant extract and positive controls (AgNO3 and penicillin), SNPs demonstrated significant bactericidal activity against all the tested bacteria (gram-positive and gram-negative). The most effective bactericidal activity was found against Pseudomonas aeruginosa, with a minimum inhibitory concentration of 1.25 µg/mL. In addition, a dose-dependent antioxidant activity of SNPs was found against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with an average IC50 value of 72.84 µg/mL. The photocatalytic activity of Methylene blue (MB) dye decomposition under sunlight was studied. The results showed that MB degraded by 98 % after 150 min in the sun. Overall, the findings of this study indicate that R. ellipticus biosynthesized SNPs may have bactericidal and photocatalytic effects.  相似文献   

15.
We present mesoporous bismuth nanosheets as a model to study the charge-storage mechanism of Mg/Bi systems in magnesium-ion batteries (MIBs). Using a systematic spectroscopy investigation of combined synchrotron-based operando X-ray diffraction, near-edge X-ray absorption fine structure and Raman, we demonstrate a reversible two-step alloying reaction mechanism Bi↔MgBi↔Mg3Bi2. Ab-initio simulation methods disclose the formation of a MgBi intermediate and confirm its high electronic conductivity. This intermediate serves as a buffer for the significant volume expansion (204 %) and acts to regulate Mg storage kinetics. The mesoporous bismuth nanosheets, as an ideal material for the investigation of the Mg charge-storage mechanism, effectively alleviate volume expansion and enable significant electrochemical performance in a lithium-free electrolyte. These findings will benefit mechanistic understandings and advance material designs for MIBs.  相似文献   

16.
Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (μ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd LIII-edge (3538 eV) micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Plant μ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at −170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, μ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd LIII-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining μ-XRF and Cd LIII-edge μ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.  相似文献   

17.
Synchrotron radiation sources have proven to be highly beneficial in many fields of research for the characterization of materials. However, only a very limited proportion of studies have been conducted by the forensic science community. This is an area in which the analytical benefits provided by synchrotron sources could prove to be very important. This review summarises the applications found for synchrotron radiation in a forensic trace evidence context as well as other areas of research that strive for similar analytical scrutiny and/or are applied to similar sample materials. The benefits of synchrotron radiation are discussed in relation to common infrared, X-ray fluorescence, tomographic and briefly, X-ray diffraction and scattering techniques. In addition, X-ray absorption fine structure analysis (incorporating XANES and EXAFS) is highlighted as an area in which significant contributions into the characterization of materials can be obtained. The implications of increased spatial resolution on microheterogeneity are also considered and discussed.  相似文献   

18.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

19.
Lead halide hybrid perovskites have received massive research attention because of their unique inherent photophysical properties that driven them for potential application in the fields of photovoltaics, light-emitting devices, lasing, X-ray detector, and so on. Perovskite single crystals and nanocrystals are generally synthesized via various low-cost solution-processed techniques. The emergence of simple growth approaches of perovskite structures enable to fabricate low-cost and highly efficient devices. However, toxicity of Pb atoms and instability of perovskite structures obstruct further commercialization of these technologies. Recent efforts have been shifted to discover novel, eco-friendly, and stable lead-free metal halide perovskite (LFHP) materials and exploring their different growth processes for various device applications. This review aims to provide an up-to-date analysis of recent progress report on LFHPs and will mainly focus on their growth processes in the single crystalline and nanocrystalline forms. This review also tries to understand how the perovskite crystal structure impacts on their fundamental properties. In addition, we discuss the current progress in various field of applications and their future aspects.  相似文献   

20.
Supramolecular porphyrin prisms have been obtained via coordinative self-assembly and characterized by 1H NMR, PFG NMR, electronic absorption spectroscopy and synchrotron-based measurements of solution phase X-ray scattering and diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号