首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proof is the fact, discussed in the second part of this Letter, that coisotropic submanifolds of a (twisted) Poisson manifold are in one-to-one correspondence with possibly singular Lagrangian subgroupoids of source-simply-connected (twisted) symplectic groupoids.  相似文献   

2.
A theorem of Muhly–Renault–Williams states that if two locally compact groupoids with Haar system are Morita equivalent, then their associated convolution C*-algebras are strongly Morita equivalent. We give a new proof of this theorem for Lie groupoids. Subsequently, we prove a counterpart of this theorem in Poisson geometry: If two Morita equivalent Lie groupoids are s-connected and s-simply connected, then their associated Poisson manifolds (viz. the dual bundles to their Lie algebroids) are Morita equivalent in the sense of P. Xu.  相似文献   

3.
Courant algebroids are structures which include as examples the doubles of Lie bialgebras and the bundle TM T*M with the bracket introduced by T. Courant for the study of Dirac structures. Within the category of Courant algebroids one can construct the doubles of Lie bialgebroids, the infinitesimal objects for Poisson groupoids. We show that Courant algebroids can be considered as strongly homotopy Lie algebras.  相似文献   

4.
In this Letter we characterize Lie elements and the elements of the kernel of the Lie bracketing from right to left mapping, using tensor calculus tools.  相似文献   

5.
6.
It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization.  相似文献   

7.
It is shown explicitly how one can obtain elements of Lie groups as compositions of products of other elements based on the commutator properties of associated Lie algebras. Problems of this kind can arise naturally in control theory. Suppose an apparatus has mechanisms for moving in a limited number of ways with other movements generated by compositions of allowed motions. Two concrete examples are: (1) the restricted parallel parking problem where the commutator of translations in y and rotations in the xy-plane yields translations in x. Here the control problem involves a vehicle that can only perform a series of translations in y and rotations with the aim of efficiently obtaining a pure translation in x; (2) involves an apparatus that can only perform rotations about two axes with the aim of performing rotations about a third axis. Both examples involve three-dimensional Lie algebras. In particular, the composition problem is solved for the nine three- and four-dimensional Lie algebras with non-trivial solutions. Three different solution methods are presented. Two of these methods depend on operator and matrix representations of a Lie algebra. The other method is a differential equation method that depends solely on the commutator properties of a Lie algebra. Remarkably, for these distinguished Lie algebras the solutions involve arbitrary functions and can be expressed in terms of elementary functions.  相似文献   

8.
Given any Poisson action G×PP of a Poisson–Lie group G we construct an object =T *G*T* P which has both a Lie groupoid structure and a Lie algebroid structure and which is a half-integrated form of the matched pair of Lie algebroids which J.-H. Lu associated to a Poisson action in her development of Drinfeld's classification of Poisson homogeneous spaces. We use to give a general reduction procedure for Poisson group actions, which applies in cases where a moment map in the usual sense does not exist. The same method may be applied to actions of symplectic groupoids and, most generally, to actions of Poisson groupoids.  相似文献   

9.
In this Letter, we construct a natural contracting homotopy in the usual cochain complex of free Lie algebras. As a consequence, we prove that the triple cohomology of Lie algebras coincides with a slightly different form of the standard cohomology theory.  相似文献   

10.
Contractions of Lie bialgebras and Hopf algebras are discussed with examples. Especially, it is shown that the Lie bialgebras associated with the compact simple Lie algebras and the quantum doubles associated with the complex simple Lie algebras can be contracted.  相似文献   

11.
Starting from the work by F. A. Berezin, and earlier paper by the author defined an invariant star product on every nonexceptional Kähler symmetric space. In this Letter a recursion formula is obtained to calculate the corresponding invariant Hochschild 2-cochains for spaces of types II and III. An invariant star product is defined on every integral symplectic (Kähler) homogeneous space of simply-connected compact Lie groups (on every integral orbit of the coadjoint representation). The invariant 2-cochains are obtained from the Bochner-Calabi function of the space. The leading term of the lth-2-cochain is determined by the l-power of the Laplace operator.  相似文献   

12.
13.
We study the local structure of Lie bialgebroids at regular points. In particular, we classify all transitive Lie bialgebroids. In special cases, they are connected to classical dynamical r-matrices and matched pairs induced by Poisson group actions.  相似文献   

14.
In quantum physical theories, interactions in a system of particles are commonly understood as perturbations to certain observables, including the Hamiltonian, of the corresponding interaction-free system. The manner in which observables undergo perturbations is subject to constraints imposed by the overall symmetries that the interacting system is expected to obey. Primary among these are the spacetime symmetries encoded by the unitary representations of the Galilei group and Poincaré group for the non-relativistic and relativistic systems, respectively. In this light, interactions can be more generally viewed as perturbations to unitary representations of connected Lie groups, including the non-compact groups of spacetime symmetry transformations. In this paper, we present a simple systematic procedure for introducing perturbations to (infinite dimensional) unitary representations of finite dimensional connected Lie groups. We discuss applications to relativistic and non-relativistic particle systems.  相似文献   

15.
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket.We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra.They can also be regarded as a "compatible version" of Lie bialgebras,that is,a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra.Many properties of compatible Lie bialgebras as the "compatible version" of the corresponding properties of Lie bialgebras are presented.In particular,there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang-Baxter equation in compatible Lie algebras as a combination of two classical Yang-Baxter equations in Lie algebras.Furthermore,a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang-Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter.As a byproduct,the compatible Lie bialgebras St into the framework to construct non-constant solutions of the classical Yang-Baxter equation given by Golubchik and Sokolov.  相似文献   

16.
The main result of this paper is a convexity theorem for momentum mappings of certain Hamiltonian actions of noncompact semisimple Lie groups. The image is required to fall within a certain open subset D of the (dual of the) Lie algebra, and the momentum map itself is required to be proper as a map to D. The set D corresponds roughly, via the orbit method, to the discrete series of representations of the group, Much of the paper is devoted to the study of D itself, which consists of the Lie algebra elements which have compact centralizer. When the group is Sp(2n), these elements are the ones which are called 'strongly stable' in the theory of linear Hamiltonian dynamical systems, and our results may be seen as a generalization of some of that theory to arbitrary semisimple Lie groups. As an application, we prove a new convexity theorem for the frequency sets of sums of positive definite Hamiltonians with prescribed frequencies.  相似文献   

17.
The Lie algebras of orderF have important applications for the fractional supersymmetry, and on the other hand the filiform Lie (super)algebras have very important properties into the Lie Theory. Thus, the aim of this work is to study filiform Lie algebras of orderF which were introduced in Navarro (2014). In this work we obtain new families of filiform Lie algebras of order 3, in which the complexity of the problem rises considerably respecting to the cases considered in Navarro (2014).  相似文献   

18.
This paper proposes an algorithm for the Lie symmetries investigation in the case of a 2D Hamiltonian system. General Lie operators are deduced firstly and, in the the next step, the associated Lie invariants are derived. The 2D Yang-Mills mechanical model is chosen as a test model for this method. PACS: 05.45.-a; 02.30.Ik  相似文献   

19.
We present an explicit construction of the basic bundle gerbes with connection over all connected compact simple Lie groups. These are geometric objects that appear naturally in the Lagrangian approach to the WZW conformal field theories. Our work extends the recent construction of Meinrenken [The basic gerbe over a compact simple Lie group, L’Enseignement Mathematique, in press. arXiv:math. DG/0209194] restricted to the case of simply connected groups.  相似文献   

20.
方建会  廖永潘  彭勇 《中国物理》2004,13(10):1620-1622
In this paper, we study the Lie symmetrical non-Noether conserved quantity of a holonomic Hamiltonian system under the general infinitesimal transformations of groups. Firstly, we establish the determining equations of Lie symmetry of the system. Secondly, the Lie symmetrical non-Noether conserved quantity of the system is deduced. Finally, an example is given to illustrate the application of the result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号