首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The enantioselective intramolecular [2 + 2 + 2] cycloaddition of various enediynes, where two acetylenic moieties are connected by a trans-olefinic moiety, gave chiral tricyclic cyclohexa-1,3-dienes using Rh-H8-BINAP catalyst. In the case of carbon-atom-tethered enediynes, enantioselectivity was generally good-to-high regardless of the substituents on their alkyne termini. In contrast, with heteroatom-tethered enediynes, appropriate substituents were required to induce the oxidative coupling of alkyne and alkene moieties before that of two alkyne moieties, which would be important for highly enantioselective intramolecular cycloaddition.  相似文献   

2.
A cobalt(I)-catalyzed [2 + 2 + 2] cycloaddition reaction between an internal acceptor-substituted alkyne and a terminal alkene leads to the formation of regiochemically enriched polysubstituted 1,3-cyclohexadiene derivatives in acceptable yields when methyl butynoate is used, whereas regiochemically pure products are formed in good yields form phenyl propyonate. The concurrent cyclotrimerization reaction of the alkyne to the corresponding benzene derivative is dependent on the sterical bulk of the alkyne and is considerably reduced with the sterically more hindered alkyne.  相似文献   

3.
Rh(I)-catalysed [2 + 2 + 2] cycloaddition allows the synthesis of aryl ethers and diaryl methanes containing a high degree of steric hindrance from relatively simple diyne and alkyne precursors. The diarylmethanes made in this way show no evidence in their NMR spectra, however, of rotational restriction.  相似文献   

4.
Enantioselective cycloaddition using chiral transition metal catalysts is an atom-economical and efficient synthetic tool for the construction of chiral carbo- and heterocyclic skeletons. This short account discloses our recent results of inter- and intramolecular enantioselective [2 + 2 + 2] cycloadditions of alkyne and/or alkene moiety(ies). Chiral iridium complexes catalyzed the alkyne trimerization for the generation of axial chirality(ies), and chiral rhodium ones catalyzed alkyne-alkyne-alkene cyclization for the generation of a quaternary carbon including spirocyclic system.  相似文献   

5.
It has been established that an electron-deficient cyclopentadienyl rhodium(III) (CpERhIII) complex catalyzes the oxidative and decarboxylative [2+1+2+1] cycloaddition of benzoic acids with diynes through C≡C triple bond cleavage, leading to fused naphthalenes. This cyclotrimerization is initiated by directed ortho C−H bond cleavage of a benzoic acid, and the subsequent regioselective alkyne insertion and decarboxylation produce a five-membered rhodacycle. The electron-deficient nature of the CpERhIII complex promotes reductive elimination giving a cyclobutadiene–rhodium(I) complex rather than the second intermolecular alkyne insertion. The oxidative addition of the thus generated cyclobutadiene to rhodium(I) (formal C≡C triple bond cleavage) followed by the second intramolecular alkyne insertion and reductive elimination give the corresponding [2+1+2+1] cycloaddition product. The synthetic utility of the present [2+1+2+1] cycloaddition was demonstrated in the facile synthesis of a donor–acceptor [5]helicene and a hemi-hexabenzocoronene by a combination with the chemoselective Scholl reaction.  相似文献   

6.
A rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition between alkenyl isocyanates and alkynes has been developed. Heating a mixture of an alkenyl isocyanate and a symmetrical internal alkyne in the presence of [Rh(ethylene)2Cl]2/P(4-OMe-C6H4)3 in toluene delivers substituted indolizinones and quinolizinones. Depending on the substrates, a rare fragmentation of the isocyanate unit can be involved within the cycloaddition process to furnish a vinylogous amide embedded in the indolizinone.  相似文献   

7.
Polyalkyne and enediyne azamacrocycles are prepared from arenesulfonamides and various alkyne and alkene derivatives either under basic or neutral conditions. The new family of macrocyclic substrates is tested in the [2+2+2] cycloaddition reaction. Several catalysts are used for the cycloisomerization reaction, and their enantioinduction is evaluated as appropriate. The effect of the structural features of the macrocycles, namely the ring size, substituents in precise positions and the number and type of unsaturations, on the [2+2+2] cycloaddition reaction has also been studied.  相似文献   

8.
Participation of alkenes and allenes in [2+2+2] cycloaddition reactions has attracted much attention recently. This version of the well‐established alkyne cyclotrimerization renders interesting products, such as cyclohexadienes and other polycycles, through cascade processes. Many mechanistic variations are observed when using certain metal complexes as catalysts. The frequent generation of stereogenic centers has prompted the development of efficient asymmetric versions. This Minireview summarizes the efforts reported to date on the use of double bonds as partners in [2+2+2] cyclotrimerizations.  相似文献   

9.
In the presence of a catalytic amount of Cp*RuCl(cod), 1,6-diynes chemoselectively reacted with monoalkynes at ambient temperature to afford the desired bicyclic benzene derivatives in good yields. A wide variety of diynes and monoynes containing functional groups such as ester, ketone, nitrile, amine, alcohol, sulfide, etc. can be used for the present ruthenium catalysis. The most significant advantage of this protocol is that the cycloaddition of unsymmetrical 1,6-diynes with one internal alkyne moiety regioselectively gave rise to meta-substituted products with excellent regioselectivity. Completely intramolecular alkyne cyclotrimerization was also accomplished using triyne substrates to obtain tricyclic aromatic compounds fused with 5-7-membered rings. A ruthenabicycle complex relevant to these cyclotrimerizations was synthesized from Cp*RuCl(cod) and a 1,6-diyne possessing phenyl terminal groups, and its structure was unambiguously determined by X-ray analysis. The intermediary of such a ruthenacycle intermediate was further confirmed by its reaction with acetylene, giving rise to the expected cycloadduct. The density functional study on the cyclotrimerization mechanism elucidated that the cyclotrimerization proceeds via oxidative cyclization, producing a ruthenacycle intermediate and subsequent alkyne insertion initiated by the formal [2 + 2] cycloaddition of the resultant ruthenacycle with an alkyne.  相似文献   

10.
A catalytic enantioselective intermolecular [2 + 2 + 2] cycloaddition of one molecule of alkene (enone) and two molecules of alkyne was developed in the presence of a nickel complex modified by chiral monodentate oxazoline ligands, which have not previously been used as chiral ligands for transition metals in asymmetric catalysts, and an aluminium phenoxide.  相似文献   

11.
[reactions: see text] A rhodium complex of N-heterocyclic carbene (NHC) has been developed for intra- and intermolecular [4 + 2] and intramolecular [5 + 2] cycloaddition reactions. This is the first use of a transition-metal NHC complex in a Diels-Alder-type reaction. For the intramolecular [4 + 2] cycloaddition reactions, all the dienynes studied were converted to their corresponding cycloadducts in 91-99% yields within 10 min. Moreover, up to 1900 turnovers have been obtained for the intramolecular [4 + 2] cycloaddition at 15-20 degrees C. For the intermolecular [4 + 2] cycloadditions, high yields (71-99%) of the corresponding cycloaddition products were obtained. The reaction time and yield were highly dependent upon the diene and the dienophile. For the intramolecular [5 + 2] cycloaddition reactions, all the alkyne vinylcyclopropanes studied were converted to their corresponding cycloadducts in 91-98% yields within 10 min. However, the catalytic system was not effective for an intermolecular [5 + 2] cycloaddition reaction.  相似文献   

12.
The ruthenium-catalyzed [2 + 2] cycloadditions of norbornadiene with a variety of alkynes have been investigated. Electronic effect of the alkyne component has shown to play an important role on the rate of the cycloaddition, and the reactivity of the alkyne component increases dramatically as the alkyne becomes more electron deficient. Increase in the steric bulk of the alkyne component decreases the reactivity of the alkyne component. It was also found that chelation effect of propargylic alcohols greatly enhanced the reactivity of the alkyne component in the ruthenium-catalyzed [2 + 2] cycloadditions.  相似文献   

13.
A highly efficient method for the synthesis of fluorine‐containing multisubstituted phenanthridines through Rh‐catalyzed alkyne [2+2+2] cycloaddition reactions has been developed. This method exhibits excellent functional‐group compatibility. When a bromodifluoromethyl group, rather than a trifluoromethyl group, was employed in the cycloaddition reaction, more‐complicated polycyclic compounds were obtained through tandem Rh‐catalyzed cycloaddition/C? H difluoromethylenation. This route provides convenient access to fluorine‐containing polycyclic compounds.  相似文献   

14.
Nickel(0) catalyzed [4+2] cycloaddition of electron-deficient dienes to alkynes and subsequent aromatization gave highly substituted arenes. This formal inverse electron-demand Diels-Alder cycloaddition is attributed to the formation of a seven-membered nickelacycle from a diene and an alkyne.  相似文献   

15.
The ruthenium-catalyzed [2+2] cycloadditions of various bicyclic alkenes with an alkyne have been investigated. The presence of the oxygen in the bridgehead of the bicyclic alkene significantly enhanced the rate of the ruthenium-catalyzed [2+2] cycloadditions. The presence of a C1-substituent on the oxanorbornadiene decreased the rate of the cycloaddition and electron-withdrawing C1-substituents were found to be more reactive than electron-donating C1-substituents in the Ru-catalyzed [2+2] cycloaddition. The nature of the substituent on the benzene ring of oxabenzonorbornadienes showed little effect on the rate of the cycloaddition.  相似文献   

16.
An enantioselective intramolecular [2+2+2] cycloaddition of 2-aminophenol-tethered triynes and diyne-nitriles proceeded using the chiral Rh catalysts, and tripodal cyclophanes and pyridinophanes with a long ansa chain (up to [16]pyridinophane) were obtained in acceptable yield with high to almost perfect ee. In the reaction of triynes, we elucidated that the oxygen atom at the alkyne terminus is essential for the excellent enantioselectivity. For the construction of cage-type molecule, the choice of rigid tether, which connects 1,6-diyne moiety with a side carbon chain having alkyne or cyano group on its terminus, was important, and 8-amino-2-naphthol moiety was also a preferable tether.  相似文献   

17.
Ru-catalyzed [2 + 2] cycloadditions between norbornadiene and alkynyl halides were found to occur in moderate to good yields (32-89%). The presence of the halide moiety greatly enhances the reactivity of the alkyne component in the cycloaddition and can be transformed into a variety of products that are difficult or impossible to obtain via direct cycloaddition. [reaction: see text]  相似文献   

18.
An intermolecular [2+2] cycloaddition reaction between an alkyne and an allene is reported. In the presence of a cobalt(I)/diphosphine catalyst, a near equimolar mixture of the alkyne and allene is converted into a 3‐alkylidenecyclobutene derivative in good yield with high regioselectivity. The reaction tolerates a variety of internal alkynes and mono‐ or disubstituted allenes bearing various functional groups. The reaction is proposed to involve regioselective oxidative cyclization of the alkyne and allene to form a 4‐alkylidenecobaltacyclopentene intermediate, with subsequent C?C reductive elimination.  相似文献   

19.
The intramolecular alkyne–azide Huisgen [3+2] cycloaddition reaction as a ‘click-chemistry’ reaction without a metal catalyst has been studied under aerobic conditions. The synthesis of various pyrrolidine–triazole hybrid compounds has also been achieved by using this intramolecular cycloaddition reaction in water with complete 1,5-regioselectivity.  相似文献   

20.
Amido-substituted Horner-Wadsworth-Emmons reagents can serve as precursors to 1,3-dipoles for use in cycloaddition. These compounds are assembled in one pot via the TMSOTf-catalyzed Arbuzov reaction of imines, acid chlorides, and phosphites. The coupling of this synthesis with alkyne cycloaddition provides a three-component synthesis of pyrroles. The dipoles can be prepared with a diverse range of imines and acid chlorides, and (3 + 2) cycloaddition with unsymmetrical alkynes is highly regiospecific, providing a modular approach to form substituted pyrroles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号