首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of supported lipid bilayers on soft polymer cushions is a useful approach to decouple the membrane from the substrate for applications involving membrane proteins. We prepared biocompatible polymer cushions by the layer-by-layer assembly of two polysaccharide polyelectrolytes, chitosan (CHI) and hyaluronic acid, on glass and silicon substrates. (CHI/HA)(5) films were characterized by atomic force microscopy, giving an average thickness of 57 nm and roughness of 25 nm in aqueous solution at pH 6.5. Formation of zwitterionic lipid bilayers by the vesicle fusion method was attempted using DOPC vesicles at pH 4 and 6.5 on (CHI/HA)(5) films. At higher pH adsorbed lipids had low mobility and large immobile lipid fractions; a combination of fluorescence and AFM indicated that this was attributable to formation of poor quality membranes with defects and pinned lipids rather than to a layer of surface-adsorbed vesicles. By contrast, more uniform bilayers with mobile lipids were produced at pH 4. Fluorescence recovery after photobleaching gave diffusion coefficients that were similar to those for bilayers on PEG cushions and considerably higher than those measured on other polyelectrolyte films. The results suggest that the polymer surface charge is more important than the surface roughness in controlling formation of mobile supported bilayers. These results demonstrate that polysaccharides provide a useful alternative to other polymer cushions, particularly for applications where biocompatibility is important.  相似文献   

2.
Lipid bilayer formation via vesicle fusion on mesoporous silica and mesoporous titania was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescent recovery after photobleaching (FRAP). Results showed that lipid bilayers were formed on mesoporous silica and that intact vesicle adsorption was obtained on mesoporous titania. From the FRAP results, it could be concluded that the lipid bilayer was fluid; however, it had a smaller diffusivity constant compared to bilayers supported on a nonporous silica.  相似文献   

3.
We show that cantilever array sensors can sense the formation of supported phospholipid bilayers on their surface and that they can monitor changes in mechanical properties of lipid bilayers. Supported lipid bilayers were formed on top of microfabricated cantilevers by vesicle fusion. The formation of bilayers led to a bending of the cantilevers of 70-590 nm comparable to a surface stress of 27-224 mN/m. Physisorption of bilayers of DOPC and other bilayers on the silicon oxide surface of cantilevers led to a tensile bending of about 70 nm whereas formation of chemisorbed bilayers of mixed thiolated (DPPTE) and non-thiolated lipids (DOPC) on the gold side of cantilevers led to a compressive bending of nearly 600 nm which depended on the ratio of DPPTE to DOPC. First results on bending of bilayer-covered cantilevers due to their interaction with the pore-forming peptide melittin are shown. The results demonstrate that cantilever sensors with immobilized bilayers can be used as model systems to investigate mechanical properties of cellular membranes and may be used for screening of membrane processes involving modification, lateral expansion, or contraction of membranes.  相似文献   

4.
Skeletonized zirconium phosphonate surfaces are used to support planar lipid bilayers and are shown to be viable substrates for studying transmembrane proteins. The skeletonized surfaces provide space between the bilayer and the solid support to enable protein insertion and avoid denaturation. The skeletonized zirconium octadecylphosphonate surfaces were prepared using Langmuir-Blodgett techniques by mixing octadecanol with octadecylphosphonic acid. After zirconation of the transferred monolayer, rinsing the coating with organic solvent removes the octadecanol, leaving holes in the film ranging from ~50 to ~500 nm in diameter, depending on the octadecanol content. Upon subsequent deposition of a lipid bilayer, either by vesicle fusion or by Langmuir-Blodgett/Langmuir-Schaefer techniques, the lipid assemblies span the holes providing reservoirs beneath the bilayer. The viability of the supported bilayers as model membranes for transmembrane proteins was demonstrated by examining two approaches for incorporating the proteins. The BK channel protein inserts directly into a preformed bilayer on the skeletonized surface, in contrast to a bilayer on a nonskeletonized film, for which the protein associates only weakly. As a second approach, the integrin α(5)β(1) was reconstituted in lipid vesicles, and its inclusion in supported bilayers on the skeletonized surface was achieved by vesicle fusion. The integrin retains its ability to recognize the extracellular matrix protein fibronectin when supported on the skeletonized film, again in contrast to the response if the bilayer is supported on a nonskeletonized film.  相似文献   

5.
This report describes the assembly of laterally diffusive lipid layers within the pores of colloidal crystals for potential application in membrane-based sensing. The amount of lipid encapsulated within colloidal crystals depends upon the method used to introduce the lipid to the crystalline substrate. Relative to a planar supported lipid bilayer, lipid loading in a 6.6 microm thick crystal was 15-73 times greater, as observed by fluorescence microscopy. Protein adsorption studies indicate that the crystal pores are open and that the silica surface of the crystal is passivated with respect to adsorption of a model protein when coated with POPC. Furthermore, the mesoporous environment of the colloidal crystal is found to protect lipid films from drying and rehydration processes that destroy planar supported lipid bilayers. The potential of colloidal crystal encapsulated lipid films for chemical sensing is demonstrated by a model protein binding assay.  相似文献   

6.
The structure and formation of supported membranes at silica surfaces by vesicle fusion was investigated by neutron reflectivity and quartz crystal microbalance (QCM-D) measurements. The structure of equimolar phospholipid mixtures of DLPC-DPPC, DMPC-DPPC, and DOPC-DPPC depends intricately on the vesicle deposition conditions. The supported bilayer membranes exhibit varying degrees of compositional asymmetry between the monolayer leaflets, which can be modified by the deposition temperature as well as the salt concentration of the vesicle solution. The total lipid composition of the supported bilayers differs from the composition of the vesicles in solution, and the monolayer proximal to the silica surface is always enriched in DPPC compared to the distal monolayer. The results, which show unambiguougsly that some exchange and rearrangement of lipids occur during vesicle deposition, can be rationalized by considering the effects of salt screening and temperature on the rates of lipid exchange, rearrangement, and vesicle adsorption, but there is also an intricate dependence on the lipid-lipid interactions. Thus, although both symmetric and asymmetric supported bilayers can be prepared from vesicles, the optimal conditions are sensitive to the lipid composition of the system.  相似文献   

7.
There is substantial scientific and practical interest in engineering supported lipid bilayers with asymmetric lipid distributions as models for biological cell membranes. In principle, it should be possible to make asymmetric supported lipid bilayers by either the Langmuir-Blodgett/Schafer (LB/LS) or Langmuir-Blodgett/vesicle fusion (LB/VF) techniques (Kalb et al. Biochim. Biophys. Acta 1992, 1103, 307-316). However, the retention of asymmetry in biologically relevant lipid bilayers has never been experimentally examined in any of these systems. In the present work, we developed a technique that is based on fluorescence interference contrast (FLIC) microscopy to measure lipid asymmetry in supported bilayers. We compared the final degree of lipid asymmetry in LB/LS and LB/VF bilayers with and without cholesterol in liquid-ordered (l(o)) and liquid-disordered (l(d)) phases. Of five different fluorescent lipid probes that were examined, 1,2-dipalmitoyl-phosphatidylethanolamine-N-[lissamine rhodamine B] was the best for studying supported bilayers of complex composition and phase by FLIC microscopy. An asymmetrically labeled bilayer made by the LB/LS method was found to be at best 70-80% asymmetric once completed. In LB/LS bilayers of either l(o) or l(d) phase, cholesterol increased the degree of lipid mixing between the opposing monolayers. The use of a tethered polymer support for the initial monolayer did not improve lipid asymmetry in the resulting bilayer. However, asymmetric LB/VF bilayers retained nearly 100% asymmetric label, with or without the use of a tethered polymer support. Finally, lipid mixing across the center of LB/LS bilayers was found to have drastic effects on the appearance of l(d)-l(o) phase coexistence as shown by epifluorescence microscopy.  相似文献   

8.
Lipid bilayers with a controlled content of anionic lipids are a prerequisite for the quantitative study of hydrophobic-electrostatic interactions of proteins with lipid bilayers. Here, the asymmetric distribution of zwitterionic and anionic lipids in supported lipid bilayers is studied by neutron reflectometry. We prepare POPC/POPS (3:1) unilamellar vesicles in a high-salt-concentration buffer. Initially, no fusion of the vesicles to a SiO(2) surface is observed over hours and days. Once the isotonic buffer is exchanged with hypotonic buffer, vesicle fusion and bilayer formation occur by osmotic shock. Neutron reflectivity on the bilayers formed this way reveals the presence of anionic lipids (d(31)-POPS) in the outer bilayer leaflet only, and no POPS is observed in the leaflet facing the SiO(2) substrate. We argue that this asymmetric distribution of POPS is induced by the electrostatic repulsion of the phosphatidylserines from the negatively charged hydroxy surface groups of the silicon block. Such bilayers with controlled and high contents of anionic lipids in the outer leaflet are versatile platforms for studying anionic lipid protein interactions that are key elements in signal transduction pathways in the cytoplasmic leaflet of eukaryotic cells.  相似文献   

9.
Planar supported lipid bilayers have attracted immense interest for their properties as model cell membranes and for potential applications in biosensors and lab-on-a-chip devices. We report the formation of fluid planar biomembranes on hydrophilic silica aerogels and xerogels. Scanning electron microscopy results showed the presence of interconnected silica beads of approximately 10-25 nm in diameter and nanoscale open pores of comparable size for the aerogel and grain size of approximately 36-104 nm with approximately 9-24 nm diameter pores for the xerogel. When the aerogel/xerogel was prehydrated and then allowed to incubate in l-alpha-phosphatidylcholine (egg yolk PC) unilamellar vesicle (approximately 30 nm diameter) solution, lipid bilayers were formed due to the favorable interaction of vesicles with the hydroxyl-abundant silica surface. Lateral mobility of labeled lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine was retained in the membranes. A diffusion coefficient of 0.61 +/- 0.22 microm(2)/s was determined from fluorescence recovery after photobleaching analysis for membranes on aerogels, compared to 2.46 +/- 0.35 microm(2)/s on flat glass. Quartz crystal microbalance-dissipation was utilized to monitor the kinetics of the irreversible adsorption and fusion of vesicles into bilayers on xerogel thin films.  相似文献   

10.
We assess the role of lateral tension in rupturing anionic dipalmitoylphosphatidyserine (DPPS), neutral dipalmitoylphosphatidylcholine (DPPC), and mixed DPPS-DPPC vesicles. Binding of Ca(2+) is known to have a significant impact on the effective size of DPPS lipids and little effect on the size of DPPC lipids in bilayer structures. In the present work we utilized laser transmission spectroscopy (LTS) to assess the effect of Ca(2+)-induced stress on the stability of the DPPS and DPPC vesicles. The high sensitivity and resolution of LTS has permitted the determination of the size and shape of liposomes in solution. The results indicate a critical size after which DPPS single shell vesicles are no longer stable. Our measurements indicate Ca(2+) promotes bilayer fusion up to a maximum diameter of ca. 320 nm. These observations are consistent with a straightforward free-energy-based model of vesicle rupture involving lateral tension between lipids regulated by the binding of Ca(2+). Our results support a critical role of lateral interactions within lipid bilayers for controlling such processes as the formation of supported bilayer membranes and pore formation in vesicle fusion. Using this free energy model we are able to infer a lower bound for the area dilation modulus for DPPS (252 pN/nm) and demonstrate a substantial free energy increase associated with vesicle rupture.  相似文献   

11.
Solid supported lipid bilayers are rapidly delaminated when drawn through the air/water interface. We have discovered that a close packed monolayer of specifically bound protein prevents this process. The protection mechanism worked in two ways. First, when protein-protected bilayers were drawn through the air/water interface, a thin bulk water layer was visible over the entire bilayer region, thereby preventing air from contacting the surface. Second, a stream of nitrogen was used to remove all bulk water from a protected bilayer, which remained fully intact as determined by fluorescence microscopy. The condition of this dried bilayer was further probed by fluorescence recovery after photobleaching. It was found that lipids were not two-dimensionally mobile in dry air. However, when the bilayer was placed in a humid environment, 91% of the bleached fluorescence signal was recovered, indicating long-range two-dimensional mobility. The diffusion coefficient of lipids under humid conditions was an order of magnitude slower than the same bilayer under water. Protected bilayers could be rehydrated after drying, and their characteristic diffusion coefficient was reestablished. Insights into the mechanism of bilayer preservation were suggested.  相似文献   

12.
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.  相似文献   

13.
The application of supported lipid bilayer systems as molecular sensors, diagnostic devices, and medical implants is limited by their lack of stability. In an effort to enhance the stability of supported lipid bilayers, three pairs of phosphatidylcholine lipids were designed to cross-link at the termini of their 2-position acyl chain upon the formation of lipid bilayers. The cross-linked lipids span the lipid bilayer, resembling naturally occurring bolaamphiphiles that stabilize archaebacterial membranes against high temperatures. The three reactions investigated here include the acyl chain cross-linking between thiol and bromine groups, thiol and acryloyl groups, and cyclopentadiene and acryloyl groups. All three reactive lipid pairs were found to cross-link in liposomal membranes, as determined by thin-layer chromatography, ion-spray mass spectrometry, and 1H NMR. The monolayer film properties of the reactive amphiphiles were characterized by surface pressure-area isotherms and showed that stable monolayers formed at the air-water interface with limiting molecular areas comparable to that of pure saturated phosphatidylcholine lipids. Langmuir-Blodgett bilayers of dimyristoylphosphatidylcholine incorporating 15 mol % of the reactive thiol and acryloyl lipids had diffusion coefficients comparable with pure dimyristoylphosphatidylcholine, while bilayers with more than 25 mol % of the reactive lipids were immobile, suggesting that interleaflet cross-linking of the lipids inhibited membrane diffusion. Our results show that the reactive lipids can cross-link within a lipid bilayer and are suitable for assembling supported lipid bilayers using Langmuir-Blodgett deposition. By using terminally reactive amphiphiles to build up supported lipid bilayers with cross-linked leaflets, bolaamphiphiles can be incorporated into asymmetric solid supported membranes to increase their stability in biosensor and medical implant applications.  相似文献   

14.
The formation of lipid bilayers, lifted from the solid substrate by layer-by-layer polyion cushions, on self-assembled monolayers (SAMs) on gold was investigated by surface plasmon resonance (SPR) and fluorescence recovery after photobleaching (FRAP). The polyions poly(diallyldimethylammonium chloride) (PDDA) and polystyrene sulfonate (PSS) sodium salt were used for the layer-by-layer polyion macromolecular assembly. The cushion was formed by electrostatic interaction of PDDA/PSS/PDDA layers with a negatively charged surface of an SAM of 11-mercaptoundecanoic acid (MUA) on gold. The lipid bilayer membranes were deposited by vesicle fusion with different compositions of SOPS (an anionic lipid, 1-stearoyl-2-oleoyl-phosphatidylserine) and POPC (a zwitterionic lipid, 1-palmitoyl-2-oleoylphosphatidylcholine). In the case of pure SOPS and for lipid mixtures with a POPC composition up to 25%, single bilayers were deposited. FRAP experiments showed that single bilayers supported on PDDA/PSS/PDDA/MUA were mobile at room temperature, with lateral coefficients of approximately (1.2–2.1)×10−9 cm2/s. The kinetics of the addition of the ion-channel-forming peptide protegrin-1 to the supported bilayers was detected by SPR. A two-step interaction was observed, similar to the association behavior of protegrin-1 with bilayers supported on PDDA/MUA. The results are similar to that of supported lipid bilayers without a layer-by-layer cushion. The model membrane system in this work is a potential biosensor for mimicking the natural activities of biomolecules and is a possible tool to investigate the fundamental properties of biomembranes.  相似文献   

15.
Two types of photosynthetic membrane proteins, the peripheral antenna complex (LH2) and the core antenna/reaction center complex (LH1-RC), play an essential role in the primary process of purple bacterial photosynthesis, that is, capturing light energy, transferring it to the RC where it is used in subsequent charge separation. Establishment of experimental platforms is required to understand the function of the supramolecular assembly of LH2 and LH1-RC molecules into arrays. In this study, we assembled LH2 and LH1-RC arrays into domain-structured planar lipid bilayers placed on a coverglass using stepwise combinations of vesicle-to-planar membrane formation and vesicle fusion methods. First, it was shown that assembly of LH2 and LH1-RC in planar lipid bilayers, through vesicle-to-planar membrane formation, could be confirmed by absorption spectroscopy and high resolution atomic force microscopy (AFM). Second, formation of a planar membrane incorporating LH2 molecules made by the vesicle fusion method was corroborated by AFM together with quantitative analysis by surface plasmon resonance (SPR). By combining planar membrane formation and vesicle fusion, in a stepwise manner, LH2 and LH1-RC were successfully organized in the domain-structured planar lipid membrane. This methodology for construction of LH2/LH1-RC assemblies will be a useful experimental platform with which to investigate energy transfer from LH2 to LH1-RC where the relative arrangement of these two complexes can be controlled.  相似文献   

16.
The fabrication, characterization, and implementation of poly(lipid)-coated, highly luminescent silica nanoparticles as fluorescent probes for labeling of cultured cells are described. The core of the probe is a sol-gel-derived silica nanoparticle, 65-100 nm in diameter, in which up to several thousand dye molecules are encapsulated (Lian, W.; et al. Anal. Biochem. 2004, 334, 135-144). The core is coated with a membrane composed of bis-sorbylphosphatidylcholine, a synthetic polymerizable lipid that is chemically cross-linked to enhance the environmental and chemical stability of the membrane relative to a fluid lipid membrane. The poly(lipid) coating has two major functions: (i) to reduce nonspecific interactions, based on the inherently biocompatible properties of the phosphorylcholine headgroup, and (ii) to permit functionalization of the particle, by doping the coating with lipids bearing chemically reactive or bioactive headgroups. Both functions are demonstrated: (i) Nonspecific adsorption of dissolved proteins to bare silica nanoparticles and of bare nanoparticles to cultured cells is significantly reduced by application of the poly(lipid) coating. (ii) Functionalization of poly(lipid)-coated nanoparticles with a biotin-conjugated lipid creates a probe that can be used to target both dissolved protein receptors as well as receptors on the membranes of cultured cells. Measurements performed on single nanoparticles bound to planar supported lipid bilayers verify that the emission intensity of these probes is significantly greater than that of single protein molecules labeled with several fluorophores.  相似文献   

17.
2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy.  相似文献   

18.
Numerous experimental studies of lipid vesicle adsorption on solid surfaces show that electrostatic interactions play an important role for the kinetics and end result. The latter can, e.g., be intact vesicles or supported lipid bilayers (SLB). Despite an accumulated quite large experimental data base, the understanding of the underlying processes is still poor, and mathematical models are scarce. We have developed a phenomenological model of a vesicle adsorbing on a substrate, where the charge of the surface and the charge and polar state of the lipid headgroup can be varied. With physically reasonable assumptions and input parameters, we reproduce many key experimental observations, clarify the details of some experiments, and give predictions and suggestions for future experiments. Specifically, we have investigated the influence of different lipid mixtures (different charges of the headgroups) in the vesicle on the outcome of a vesicle adsorption event. For different mixtures of zwitterionic lipids with positive and negative lipids, we investigated whether the vesicle adsorbs or not, and--if it adsorbs--to what extent it gets deformed and when it ruptures spontaneously. Diffusion of neutral vesicles on different types of negatively charged substrates was also simulated. The mean surface charge density of the substrate was varied, including or excluding local fluctuations in the surface charge density. The simulations are compared to available experiments. A consistent picture of the influence of different lipid mixtures in the vesicle on adsorption, and the influence of different types of substrates on vesicle diffusion, appear as a result of the simulation data.  相似文献   

19.
Vesicle fusion has long provided an easy and reliable method to form supported lipid bilayers (SLBs) from simple, zwitterionic vesicles on siliceous substrates. However, for complex compositions, such as vesicles with high cholesterol content and multiple lipid types, the energy barrier for the vesicle-to-bilayer transition is increased or the required vesicle–vesicle and vesicle–substrate interactions are insufficient for vesicle fusion. Thus, for vesicle compositions that more accurately mimic native membranes, vesicle fusion often fails to form SLBs. In this paper, we review three approaches to overcome these barriers to form complex, biomimetic SLBs via vesicle fusion: (i) optimization of experimental conditions (e.g., temperature, buffer ionic strength, osmotic stress, cation valency, and buffer pH), (ii) α-helical (AH) peptide-induced vesicle fusion, and (iii) bilayer edge-induced vesicle fusion. AH peptide-induced vesicle fusion can form complex SLBs on multiple substrate types without the use of additional equipment. Bilayer edge-induced vesicle fusion uses microfluidics to form SLBs from vesicles with complex composition, including vesicles derived from native cell membranes. Collectively, this review introduces vesicle fusion techniques that can be generalized for many biomimetic vesicle compositions and many substrate types, and thus will aid efforts to reliably create complex SLB platforms on a range of substrates.  相似文献   

20.
Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号