首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinyl ethylene carbonate (VEC) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi0.4Mn0.4Co0.2O2/graphite lithium-ion battery at higher voltage operation (3.0–4.5 V) than the conventional voltage (3.0–4.25 V). In the voltage range of 3.0–4.5 V, it is shown that the performances of the cells with VEC-containing electrolyte are greatly improved than the cells without additive. With 2.0 wt.% VEC addition in the electrolyte, the capacity retention of the cell is increased from 62.5 to 74.5 % after 300 cycles. The effects of VEC on the cell performance are investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), x-ray powder diffraction (XRD), energy dispersive x-ray spectrometry (EDS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results show that the films electrochemically formed on both anode and cathode, derived from the in situ decomposition of VEC at the initial charge–discharge cycles, are the main reasons for the improved cell performance.  相似文献   

2.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   

3.
V2O5-SiO2 hybrid material was fabricated by heat-treating a mixture of H2SiO3 and V2O5. SEM, TEM, XRD, and N2 isotherm analyses were performed to characterize the morphology and structure details of the as-prepared V2O5-SiO2. The possibility of using the as-prepared V2O5-SiO2 as anode material for aqueous lithium-ion batteries was investigated. Potentiostatic and galvanostatic results indicated that the intercalation/de-intercalation of Li+ in this material in aqueous electrolyte was quasi-reversible. It was also found that a discharge capacity of up to 199.1 mAh g?1 was obtained at a current density of 50 mA g?1 in aqueous solution of 1 M Li2SO4, a value which is much higher than the available reported capacities of vanadium (+5) oxides in aqueous electrolytes.  相似文献   

4.
Manganese oxide-based cathodes are one of the most promising lithium-ion battery (LIB) cathode materials due to their cost-effectiveness, high discharge voltage plateau (above 4.0 V vs. Li/Li+), superior rate capability, and environmental benignity. However, these batteries using conventional LiPF6-based electrolytes suffer from Mn dissolution and poor cyclic capability at elevated temperature. In this paper, the ionic liquid (IL)-based electrolytes, consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfon)imidate (PYR1,4-TFSI), propylene carbonate (PC), lithium bis(trifluoromethanesulfon)imide (LiTFSI), and lithium oxalyldifluoroborate (LiDFOB) additive, were explored for improving the high temperature performance of the LiMn2O4 batteries. It was demonstrated that LiTFSI-ILs/PC electrolyte associated with LiDFOB addition possessed less Mn dissolution and Al corrosion at the elevated temperature in LiMn2O4/Li batteries. Cyclic voltammetry and electrochemical impedance spectroscopy implied that this kind of electrolyte also contributed to the formation of a highly stable solid electrolyte interface (SEI), which was in accordance with the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. Cyclic voltammetry and electrochemical impedance spectroscopy implied that the cells using this kind of electrolyte exhibited better interfacial stability, which was further verified by the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. These unique characteristics would endow this kind of electrolyte a very promising candidate for the manganese oxide-based batteries.  相似文献   

5.
LiTi2O4 anode material for lithium-ion battery has been prepared by a novel one-step solid-state reaction method using Li2CO3, TiO2, and carbon black as raw materials. X-ray diffraction, scanning electron microscopy, energy-dispersive spectrometry, and the determination of electrochemical properties show that the single phase of LiTi2O4 with spinel crystal structure is formed at 850?°C by this new method, and the lattice parameter is about 8.392?Å. The primary particle size of the LiTi2O4 powder is about 0.5–1.0 μm and its morphology is similar to a sphere. The lithium ion insertion voltage of LiTi2O4 anode material is about 1.50 V versus lithium metal, the initial discharge capacity is about 133.6 mAh g-1, the charge–discharge voltage plateau is very flat, and no solid electrolyte interface film is formed when working potential is more than 1.0 V. The reaction reversibility and the cycling stability are excellent, and the high rate performance is good.  相似文献   

6.
Polymer electrolytes containing epoxidised natural rubber (ENR50)/poly(vinyl chloride) (PVC) blend as a polymer host, a solvent mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizer, and lithium imide, LiN (CF3SO2)2, as a salt were studied. Polymer electrolytes that were obtained by solvent cast yielded solid dry rubbery films with a thickness range of 110–125 μm. Impedance spectroscopy, Fourier transform infra red (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed on these samples. The prepared solid polymer electrolytes exhibit ionic conductivities in the order 10−4 S cm−1 at room temperature as expected. However, the physical properties of the electrolytes have improved significantly when optimal composition has been selected. Paper presented at the International Conference on Solid State Science and Technology 2006, Kuala Terengganu, Malaysia, Sept. 4–6, 2006.  相似文献   

7.
Ethylene sulfate (DTD) is investigated as a novel film formation electrolyte additive for graphite anode material in lithium-ion battery. The CV results reveal that DTD is reduced prior to ethylene carbonate (EC) at the interface between graphite and electrolyte, while it cannot prevent the sustained reduction of propylene carbonate (PC) when the amount of DTD is lesser than 3 wt% in the PC-based electrolyte. XPS analyses demonstrate that the reduction products of DTD, Li2SO3, and ROSO2Li are formed at the surface of graphite in the EC-based electrolyte, which is beneficial to lower the interfacial resistance as suggested by the EIS results. In addition, SEM images show a smoother and homogeneous surface film at the surface of graphite when DTD is incorporated into the electrolyte. Consequently, the Li/graphite half cells cycled in EC-based electrolyte containing DTD exhibit higher specific capacity and improved cycling capability than that without DTD.  相似文献   

8.
Li-ion rechargeable batteries based on polymer electrolytes are of great interest for solid state electrochemical devices nowadays. Many studies have been carried out to improve the ionic conductivity of polymer electrolytes, which include polymer blending, incorporating plasticizers and filler additives in the electrolyte systems. This paper describes the effects of incorporating nano-sized MnO2 filler on the ionic conductivity enhancement of a plasticized polymer blend PMMA–PEO–LiClO4–EC electrolyte system. The maximum conductivity achieved is within the range of 10−3 S cm−1 by optimizing the composition of the polymers, salts, plasticizer, and filler. The temperature dependence of the polymer conductivity obeys the VTF relationship. DSC and XRD studies are carried out to clarify the complex formation between the polymers, salts, and plasticizer.  相似文献   

9.
The addition of polymethyl methacrylate (PMMA) having different molecular weights to electrolytes containing ammonium trifluoromethanesulfonate (NH4CF3SO3) in diethyl carbonate (DEC) has been found to result in conductivity enhancement and to yield gel electrolytes with conductivity higher than the corresponding liquid electrolytes. The increase in conductivity has been found to be due to the dissociation of undissociated NH4CF3SO3 and ion aggregates present in the electrolytes, and this has been supported by Fourier transform infrared spectroscopy results, which suggests active interaction of PMMA and NH4CF3SO3 in these gel electrolytes. The increase in conductivity also depends upon the molecular weight of the polymer used and is relatively more for PMMA having lower molecular weight. The increase in viscosity with PMMA addition also depends upon the molecular weight of the polymer and is closely related to the conductivity behavior of these electrolytes. Polymer gel electrolytes have been found to be thermally stable up to a temperature of 125 °C.  相似文献   

10.
The rates of graphite gasification in interaction with high-temperature gas flows were compared. Carbon dioxide and a mixture of water vapor and argon taken in a 1:1 molar ratio were used as reagents. The reactor was a tube furnace; its temperature was varied from 1250 to 1400 K. The rates of graphite gasification in CO2 and water vapor-argon mixture flows were approximately equal at 1250–1300 K, whereas, at 1350–1400 K, the water vapor-argon mixture exhibited higher reactivity than CO2. The data obtained were approximated by Arrhenius dependences; the activation energy was found to be 153 kJ/mol for CO2 and 248 kJ/mol for H2O-Ar.  相似文献   

11.
Different SnO2 nanostructures (SnO2Ns) were directly electrodeposited on the surface of anodized copper (Cu) substrates via the potentiostatic electrodeposition method with addition of supporting electrolytes. The effects of the supporting electrolytes and the electrodeposition parameters on the evolution of nanostructures and on the electrochemical properties of the SnO2Ns were systematically investigated using field emission scanning electron microscope (FESEM) and electrochemical methods including cyclic voltammetry (CV) and chronoamperometry (CA). The results confirmed that SnO2Ns exhibit alloying/de-alloying reactions with Li+ ions versus Ag/AgCl in aqueous electrolyte solution (LiOH·H2O and Li2CO3). The super capacitor performance of the SnO2Ns was investigated in 0.5-M Na2SO4 aqueous solution, and the highest specific capacitance of 110 Fg?1 at a scan rate of 5 mV s?1 was obtained for SnO2 microspheres made up of nanocubes. Our study shows that supporting electrolytes and electrodeposition parameters play the significant role in the growth of SnO2Ns and its electrochemical properties.  相似文献   

12.
This work examines the effect of lithium trifluoromethanesulfonate (LiCF3SO3) and glycerol on the conductivity and dielectric properties of potato starch-chitosan blend-based electrolytes. The electrolytes are prepared via solution cast technique. From X-ray diffraction (XRD) analysis, the blend of 50 wt.% starch and 50 wt.% chitosan is found to be the most amorphous blend. Fourier transform infrared (FTIR) spectroscopy studies show the interaction between the electrolyte materials. The room temperature conductivity of pure starch-chitosan film is found to be (2.85 ± 1.31) × 10?10 S cm?1. The incorporation of 45 wt.% LiCF3SO3 increases the conductivity to (7.65 ± 2.27) × 10?5 S cm?1. Further conductivity enhancement up to (1.32 ± 0.35) × 10?3 S cm?1 has been observed on addition of 30 wt.% glycerol. This trend in conductivity is verified by XRD and dielectric analysis. The temperature dependence of conductivity of all electrolytes are Arrhenian.  相似文献   

13.
Effects of two different precipitants of Na2CO3 and Na2C2O4 on LiNi0.5Mn1.5O4 (LNMO) cathode materials, which are prepared by a modified co-precipitation method, have been investigated. Various measurements have been applied to characterize the physical and electrochemical performances of LNMO. Compared with the LNMO prepared by the oxalate co-precipitation (LNMO2), the material synthesized by the carbonate co-precipitation (LNMO1) not only shows more uniform porosity and smaller particles but also has a better rate capability and cycling performance. In addition, the sample prepared by carbonate has a stable spherical structure, due to the fact that carbonate co-precipitation with less gas release during calcination can prevent the destruction of the as-prepared LNMO material structure and promote the formation of regular particle and aperture. Based on the electrochemical test results, LNMO1 shows greatly enhanced electrochemical performance of a high initial discharge capacity of 125.6 mAh g?1 at 0.25 °C, as well as a preferably capacity retention of 96.5% after 100 cycles at 0.5 °C. And even at a high rate of 10 °C, the discharge capacity of LNMO1-based cell still approaches 83.1 mAh g?1.  相似文献   

14.
There has been an increasing interest towards the incorporation of nanosize ceramic fillers in polymer electrolytes. Solid polymer electrolytes based on polyvinylidene fluoride (PVDF), silver triflate (AgCF3SO3), and x wt% of aluminum oxide (Al2O3) nanopowders (where x = 1, 3, 5, and 10, respectively) have been prepared using solution casting technique. The structural characteristics of these thin film specimens were studied using Fourier transform infrared (FTIR) and X-ray diffraction (XRD) patterns at room temperature. The appearance of new absorption bands and gradual shifts observed in some characteristic peaks confirmed the complex formation between polyvinylidene fluoride and silver triflate. Furthermore, the addition of nanosized filler Al2O3 has also indicated the interaction of the filler with the polymer salt complex. The XRD patterns obtained for all these samples in the 2θ range 10° to 70° showed the amorphous nature of these samples. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006.  相似文献   

15.
The thin-film solid polymer electrolyte based on polyethylene oxide (PEO) with sodium chlorite (NaClO3) has been prepared by a solution-cast technique. The electrolyte was characterized by X-ray diffraction (XRD), infrared (IR), cyclic voltammetry, alternating current conductivity, and Wagner’s polarization studies. The complexation of NaClO3 with PEO was confirmed through the XRD and IR studies. The transference number measurement has shown that the ion transport is predominant over electrons in the polymer electrolytes (t ions ≈ 0.94). The conductivity enhancement was observed in the case of the PEO/NaClO3 system with the addition of plasticizers (low-molecular-weight polyethylene glycol, organic solvents propylene carbonate and dimethyl formamide. Cyclic voltammetry analysis showed the stability and redox character of the electrolyte and electrode. Finally, polymer electrolyte systems were examined by electrochemical cell studies using V2O5 and composite V2O5 cathode at temperature of 35 °C. Overall, the plasticized electrolyte shows a better electrochemical performance, and a higher discharge capacity was observed in composite V2O5-based cells over V2O5-based cells.  相似文献   

16.
Spherical LiNi1/3Co1/3Mn1/3O2 particles were successfully synthesized using Na2CO3 as a precipitant. Electrochemical measurements indicate that the as-synthesized spherical particles deliver a high reversible capacity of above 180 mAh g?1 at 0.1 C in the voltage range of 2.8–4.4 V and display an excellent cyclic performance at 0.5 C. However, unsatisfactory rate capability was detected for the as-prepared spherical particles. The reason for the unsatisfactory rate capability was investigated through a comparison of the properties of the as-synthesized spherical particles versus the ball-milled samples via a combination of specific surface areas test, electronic conductivity measurement, and electrochemical impedance spectroscopy. The results show that both the rate capabilities of cathode materials and the electronic conductivities of the mixtures of active material, conductive additive, and binder are highly improved when the secondary spherical particles were broken, indicating that the poor electronic conductivity of electrode caused by the large secondary spherical particles with a great amount of nano-pores is a significant factor for the unsatisfactory rate capability.  相似文献   

17.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

18.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

19.
MnO2/carbon nanotube composite electrodes for Li-ion battery application were directly coated with ultrathin thicknesses of aluminum oxide film by atomic layer deposition (ALD). The non-reactive Al2O3 layer not only provides a stable film to protect the manganese oxide and carbon nanotubes from undesirable reaction with the electrolyte but also restrains the volume change strain of manganese oxide during cycling. The first cycle Coulombic efficiency of coated samples was increased to different extents depending on the coating thickness. In the following cycles, the coated electrodes denote high specific capacity, good capacity retention ability, and perfect rate charge/discharge performance.  相似文献   

20.
The thermal behavior of Na2CO3+Li2CO3 melt is studied by the method of thermodynamic simulation. The equilibrium compositions of the gas and salt phases are calculated at different temperatures in the initial argon atmosphere. Basic trends of the variation in the compositions of the melts and the gas phase above the melts in the presence of carbon are determined. The obtained results characterizing the stability of carbonate components in the melt are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号