首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
阳离子聚合物基因转染载体的研究进展   总被引:2,自引:0,他引:2  
安全有效的基因载体是实现基因治疗的必要条件,由于阳离子聚合物易于合成和改性,无免疫原性,可以方便地与DNA形成紧密的超分子复合物,保护DNA免受核酸酶的降解,并促进其进入细胞,从而成为非病毒基因载体中的一个重要类型;但阳离子聚合物基因载体,对细胞具有电荷相关的毒性,转染效率低于病毒载体,这成为限制其进入临床使用的瓶颈.本文从提高阳离子聚合物作为基因载体时的转染效率及降低其毒性方面综述了阳离子聚合物基因载体的研究进展,归纳了改善阳离子聚合物基因载体转染特性的八种方法,预测了阳离子聚合物基因载体的发展前景.  相似文献   

2.
龚兆翠  尹超  赵惠  卢晓梅  范曲立  黄维 《化学进展》2016,28(9):1387-1396
光敏感的纳米载体因其可从时间和空间上精确地控制药物的释放以实现对肿瘤的高效治疗,近年来逐渐成为生物医学领域的研究热点之一。本文综述了光敏感的纳米载体破裂从而释放出装载的药物的三种机理,主要包括:(1)光致异构化引发的纳米载体形态转变;(2)光反应引发的纳米载体降解;(3)光热引发的纳米载体破裂。本文简单介绍了这三种释放机理,例举了这三种释放机理所对应的光敏感材料,并阐述了其在药物运输、可控释放以及肿瘤治疗中的最新研究进展以及存在的问题,为光敏感纳米载体在生物体系中的应用提供参考,并对今后的发展作了展望。  相似文献   

3.
基因疗法是治疗基因变异引起的先天性遗传疾病和后天获得性疾病以及癌症的新型有效方法。外源基因在细胞中安全、高效、稳定的表达是基因治疗成功的关键,这与基因治疗所使用的载体系统息息相关。基因载体主要分为病毒载体和非病毒载体两大类:病毒载体的转染效率较高,但副作用较大;非病毒载体作为一种新型的基因传递系统,可以弥补病毒载体的缺陷,尽管其转染效率稍逊于病毒载体,但在基因治疗领域具有不可替代的作用。随着纳米技术的出现和蓬勃发展,基于纳米材料的基因载体研究受到越来越多的关注。纳米基因载体具有如下潜在的优势:它制备相对简单,易于对其进行多功能的修饰;具有良好的生物相容性,一般不会引起强烈的机体免疫反应;粒径普遍很小,容易穿过人体的组织间隙而被细胞吸收,基因转运效率较高;可以较有效保护其所携带外源基因,利于基因更高效地表达。本文主要对基于金属、无机非金属、阳离子聚合物和脂质体纳米材料作为基因载体的研究进展进行综述和展望。  相似文献   

4.
高分子基因载体输送系统是人类基因治疗研究中的一个重要工具。随着对高分子基因载体输送机制的深入了解,靶向细胞核的病毒型结构高分子载体既具有非病毒载体的结构灵活可控、低毒性、合成简便、费用低廉的优点,又具有病毒载体的高效、靶向细胞核作用强的优点,其将有较大的发展前景。近年来,针对特定的基因输送设计了多种高分子载体。本文介绍了聚乙烯亚胺(PEI)、聚甲基丙烯酸二甲氨乙酯(PDMAEMA)、嵌段共聚物、多聚赖氨酸(PLL)、糖类高分子(β-环糊精、壳聚糖、葡聚糖)等高分子载体的研究进展。  相似文献   

5.
张悦  于奡  王永健 《化学进展》2008,20(5):740-746
聚合物纳米体系在药物传递和基因载体方面具有重要的科研价值和广阔的应用前景,这方面的研究已成为当今生物医学材料界最活跃的领域之一。本文对聚合物纳米体系在药物传递和基因载体方面的应用做了简单的概括,介绍了其中具有代表性的几种应用体系,如聚合物药物、聚合物-药物偶联体、聚合物-蛋白质偶联体、连接药物的聚合物胶束以及聚合物-基因复合物等,对当前研究的热点以及研究中存在的问题和不足进行了评述。  相似文献   

6.
基因治疗是一种有效的治疗先天性遗传性疾病以及后天获得性疾病的手段。它通过激发细胞的生物活性或者抑制细胞非正常的功能来治疗或者预防疾病的发生,例如细胞的基因紊乱,细胞的无序增殖。目前基因治疗所面临的问题是缺乏有效的基因递送载体。基因载体主要分为病毒性基因载体和非病毒性基因载体。与病毒性基因载体相比,非病毒性基因载体具有毒性小、安全性高、易于制备、能够荷载分子量大的DNA等优点。本文综述了非病毒性基因载体的合成研究进展。  相似文献   

7.
纳米阳离子多聚物在基因载体系统的应用   总被引:1,自引:0,他引:1  
阳离子多聚物能与DNA通过静电吸附作用而自组装成纳米微粒,防止DNA被核酸酶降解.阳离子多聚物由于具备合成简便、储存稳定、基因荷载率高、靶向性强、免疫原性低等优点而被用作基因载体.阳离子多聚物按特性可分为两类:合成型和天然型.经典的人工合成型阳离子多聚物基因载体主要有:多聚乙烯亚胺、多聚左旋赖氨酸和树状大分子等;天然生物型阳离子多聚物基因载体主要有壳聚糖及其衍生物和明胶等.本文详细论述了各种阳离子聚合物用作基因载体的性能特点、自身缺陷、介导基因进入细胞的机理和靶向性策略,并对非病毒基因载体的发展作出展望.  相似文献   

8.
本综述重点介绍了近年来普鲁兰多糖作为药物释放系统载体材料的研究进展及其在药物释放系统中的应用情况。  相似文献   

9.
因为环糊精的生物相容性和多功能性,通过改性以及各种剂型的设计,能够扩展其在医药领域的应用。本文介绍了环糊精及其衍生物在药物控制释放体系中的作用机理及特点,并结合本课题组的研究工作,综述了近年来环糊精在该领域中的应用研究进展。  相似文献   

10.
壳聚糖及其衍生物基因载体的研究进展   总被引:10,自引:0,他引:10  
壳聚糖是一种天然的生物可降解性,生物相容性好而且安全无毒的多糖,因而它成为基因治疗载体研究的热点。本文就近年来壳聚糖及其衍生物作为基因载体转染的研究进展和现状作简要的综述,并对转染率的影响因素如壳聚糖的分子量、粒径、脱乙酰度等进行着重介绍。  相似文献   

11.
常见的阳离子聚合物能够通过静电作用有效缩合DNA,形成聚电解质复合物(PECs)。这些复合物易于细胞内在化,从内涵体中逃逸,并能保护DNA免受DNA酶的降解。但是,强烈的静电作用也限制了基因进入细胞核之后从复合物中的释放,限制了基因的表达。鉴于此,科学家们设计了一类“智能”高分子载体,这些智能高分子载体能够响应外界微环境温度、pH值和氧化还原环境变化的刺激,其自身大分子构象发生改变,进而促进DNA从复合物中逃逸,提高了转染率。本文介绍了近年来有关聚异丙基丙烯酰胺基温度响应性载体以及光、pH和响应胞内谷胱甘肽(GSH)等氧化还原反应的非病毒转基因载体的研究进展。  相似文献   

12.
用邻位苄基溴与双胺进行门舒特金反应,合成了2种线性的季铵盐阳离子聚合物.其中,含有酚基酯键的阳离子聚合物,一旦进入细胞后,可以在细胞内的酯酶催化下快速水解,使得聚合物自降解断裂为不带电的非季铵盐小分子,从而快速释放DNA,最终达到提高转染效率的目的.通过对复合物纳米颗粒的粒径和电势测定,证明了这2种阳离子聚合物都能够有效地结合DNA形成表面带正电的复合物纳米颗粒.凝胶阻滞电泳实验表明,所合成的阳离子聚合物都能稳定地包裹DNA.而在酯酶条件下,含有酚基酯键的阳离子聚合物可以发生降解,使得纳米复合物释放出DNA.同时,含有酚基酯键的阳离子聚合物由于其独特的可降解性,相比于PEI,降低了细胞毒性.在体外细胞转染实验中,2种阳离子聚合物都有较好的转染效果.其中酯酶响应的载体在高N/P下依然表现出较高的转染效率,说明该阳离子载体能够在细胞内有效降解并释放出DNA.  相似文献   

13.
Abstract

Lipophosphoramide-based cationic lipids are a class of synthetic vectors used for gene delivery that can be produced in multigram scale. The use of trimethylarsonium moiety as a cationic polar head was beneficial to produce efficient gene delivery vectors for in vivo applications. Moreover, this type of cationic lipid can also exhibit some bactericidal effects.  相似文献   

14.
15.
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.  相似文献   

16.
Gene therapy is a promising method to treat acquired and inherited diseases by introducing exogenous genes into specific recipient cells. Polymeric micelles with different nanoscopic morphologies and properties hold great promise for gene delivery system. Conventional cationic polymers, poly(ethyleneimine)(PEI), poly(L-lysine)(PLL), poly(2-dimethyla-minoethyl methacrylate)(PDMAEMA) and novel cationic polymers poly(2-oxazoline)s(POxs), have been incorporated into block copolymers and decorated with targeting moieties to enhance transfection efficiency. In order to minimize cytotoxicity, nonionic block copolymer micelles are utilized to load gene through hydrophilic and hydrophobic interactions or covalent conjugations, recently. From our perspective, properties(shape, size, and mechanical stiffness, etc.) of block copolymer micelles may significantly affect cytotoxicity, transfection efficiency, circulation time, and load capacity of gene vectors in vivo and in vitro. This review briefly sums up recent efforts in cationic and nonionic amphiphilic polymeric micelles for gene delivery.  相似文献   

17.
现代基因技术和人类基因组工程图谱的完成,为采用基因分子生物学方法治疗各类疾病,提高人类生命质量开辟了广阔的前景.由于裸DNA分子难以在体液中稳定存在,在主要器官中只能实现低层次的表达,寻求实现广泛基因表达的基因传递系统已成为基因治疗在大规模临床应用中的关键问题,聚乙烯亚胺(PEI)具有“质子海绵”效应,  相似文献   

18.
制备了苯甲酰亚胺键偶联的聚乙二醇化(PEG化)聚乙烯亚胺(m PEG-CH=N-PEI),并以还原无p H响应特性m PEG-PEI作为对照.研究结果表明,PEG链段的引入并未影响聚乙烯亚胺与脱氧核糖核酸(DNA)分子的缔合,形成了尺寸为80 nm,表面电位约为10 m V的基因超分子组装体,具有很好的生理盐稳定性.在模拟溶酶体的酸性环境下,苯甲酰亚胺键有效断裂,显示出很好的p H响应特性.Hep G2细胞培养结果表明,由于PEG链段有效屏蔽了组装体表面的正电荷,PEG化组装体的细胞毒性和内吞效率显著降低,但溶酶体酸性条件使苯甲酰亚胺键断裂,有利于组装体逃离溶酶体,因此m PEG-CH=N-PEI依然具有很高的基因转染效率,实现了基因载体细胞外稳定传递、细胞内响应解离并高效转染的功能.  相似文献   

19.
The use of conventional therapy based on a single therapeutic agent is not optimal to treat human diseases. The concept called “combination therapy”, based on simultaneous administration of multiple therapeutics is recognized as a more efficient solution. Interestingly, this concept has been in use since ancient times in traditional herbal remedies with drug combinations, despite mechanisms of these therapeutics not fully comprehended by scientists. This idea has been recently re‐enacted in modern scenarios with the introduction of polymeric micelles loaded with several drugs as multidrug nanocarriers. This Concept article presents current research and developments on the application of polymeric micelles for multidrug delivery and combination therapy. The principles of micelle formation, their structure, and the developments and concept of multidrug delivery are introduced, followed by discussion on recent advances of multidrug delivery concepts directed towards targeted drug delivery and cancer, gene, and RNA therapies. The advantages of various polymeric micelles designed for different applications, and new developments combined with diagnostics and imaging are elucidated. A compilation work from our group based on multidrug‐loaded micelles as carriers in drug‐releasing implants for local delivery systems based on titania nanotubes is summarized. Finally, an overview of recent developments and prospective outlook for future trends in this field is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号