首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The one-electron oxidation reaction of tris[di-tert-butyl(methyl)silyl]silyl and -germyl anions with dichlorogermylene-dioxane complex results in the formation of stable tris[di-tert-butyl(methyl)silyl]silyl and -germyl radicals 1 and 2, representing the first isolable radical species of heavier Group 14 elements lacking stabilization by conjugation with pi-bonds. The crystal structures of both silyl and germyl radicals 1 and 2 showed a completely planar geometry around the radical centers. The ESR spectra of 1 and 2 showed strong signals with characteristic satellites due to the coupling with the 29Si and 73Ge nuclei. The small values of the hyperfine coupling constants a(29Si) and a(73Ge) clearly indicate the pi-character of both radicals, corresponding to a planar geometry and sp2 hybridization of the radical centers. Both 1 and 2 easily undergo halogenation reactions with carbon tetrachloride, 1,2-dibromoethane, and benzyl bromide to form the corresponding halosilanes and halogermanes.  相似文献   

2.
In this paper, the high reactivity of silyl macroradicals toward double bonds of olefinic compounds has been explained by means of quantum‐mechanical calculations through their frontier orbital characteristics. In this way, the main orbital interaction corresponds to the overlapping between the SOMO of the disilyl radical and the LUMO of the olefin. In order to obtain more accurate results of differential reactivity, an orbitalic SOMO‐HOMO interaction should be included in addition to the main SOMO‐LUMO one. Also, we theoretically studied the regioselectivity of the addition of silyl radicals to double bonds obtaining similar results as for carbon centered radicals where the reaction takes place on the less hindered carbon of the olefin. Regarding to the geometrical and electronic parameters, it has been shown that carbon radicals have a sp2 geometry and a negative charge on the radical center whilst silyl radicals have a sp3 goemetry and a positive charge. Both factors contribute to the enhanced reactivity of silyl radicals with respect to carbon ones.  相似文献   

3.
Highly colored (red) solutions of various enol silyl ethers and tetranitromethane (TNM) are readily bleached to afford good yields of alpha-nitro ketones in the dark at room temperature or below. Spectral analysis show the red colors to be associated with the intermolecular 1:1 electron donor-acceptor (EDA) complexes between the enol silyl ether and TNM. The formation of similar vividly colored EDA complexes with other electron acceptors (such as chloranil, tetracyanobenzene, tetracyanoquinodimethane, etc.) readily establish enol silyl ethers to be excellent electron donors. The deliberate irradiation of the diagnostic (red) charge-transfer absorption bands of the EDA complexes of enol silyl ethers and TNM at -40 degrees C affords directly the same alpha-nitro ketones, under conditions in which the thermal reaction is too slow to compete. A common pathway is discussed in which the electron transfer from the enol silyl ether (ESE) to TNM results in the radical ion triad [ESE(*)(+), NO(2)(*), C(NO(2))(3)(-)]. A subsequent fast homolytic coupling of the cation radical of the enol silyl ether with NO(2)(*)() leads to the alpha-nitro ketones. The use of time-resolved spectroscopy and the disparate behavior of the isomeric enol silyl ethers of alpha- and beta-tetralones as well as of 2-methylcyclohexanone strongly support cation radicals (ESE(*)(+)) as the critical intermediate in thermal and photoinduced electron-transfer as described in Schemes 1 and 2, respectively.  相似文献   

4.
Acylsilanes with terminal alpha-stannyl bromide or xanthate functionalities are prepared. Alpha-stannyl radicals generated from these acylsilanes undergo intramolecular cyclizations to give cyclic silyl enol ethers regiospecifically. The radical processes involve radical cyclization, Brook rearrangement, and beta-fragmentation in sequence. A tributylstannyl group serves as the radical leaving group. The newly formed sigma-bond and pi-bond are located between the same two carbon atoms. This approach is limited to the formation of five-membered rings. In another route, omega-bromo-alpha-phenylsulfonylacylsilanes are synthesized. The radical cyclizations of these alpha-sulfonylacylsilanes also give cyclic silyl enol ethers. The phenylsulfonyl moiety is the radical leaving group in this system. Furthermore, the newly formed sigma-bond and pi-bond are located at adjacent positions sharing a single carbon atom. The latter approach is effective for both five- and six-membered ring formation.  相似文献   

5.
In this report we present synthetic, crystallographic, and new electron paramagnetic resonance (EPR) spectroscopic work that shows that the synthetic route leading to the recently reported, first persistent plumbyl radical *PbEbt3 (Ebt = ethylbis(trimethylsilyl)silyl), that is, the oxidation of the related PbEbt3-anion, was easily extended to the synthesis of other persistent molecular mononuclear radicals of lead and tin. At first, various novel solvates of homoleptic potassium metallates KSnHyp3 (4a), KPbHyp3 (3a), KSnEbt3 (4b), KPbIbt3 (3c), and KSnIbt3 (4c) (Hyp = tris(trimethylsilyl)silyl, Ibt = isopropylbis(trimethylsilyl)silyl), as well as some heteroleptic metallates, such as [Li(OEt2)2][Sn(n)BuHyp2] (3d), [Li(OEt2)2][Pb(n)BuHyp2] (4d), [Li(thf)4][PbPhHyp2] (3e), and [K(thf)7][PbHyp2{N(SiMe3)2}] (3f), were synthesized and crystallographically characterized. Through oxidation by tin(II) and lead(II) bis(trimethylsilyl)amides or the related 2,6-di-tert-butylphenoxides, they had been oxidized to yield in most cases the corresponding radicals. Five novel persistent homoleptically substituted radicals, that is, *SnHyp3 (2a), *PbHyp3 (1a), *SnEbt3 (2b), *SnIbt3 (2c), and *PbIbt3 (1c), had been characterized by EPR spectroscopy. The stannyl radicals 2a and 2c as well as the plumbyl radical 1c were isolated as intensely colored crystalline compounds and had been characterized by X-ray diffraction. Persistent heteroleptically substituted radicals such as *PbHyp2Ph (1e) or *PbHyp2Et (1g) had also been generated, and some selected EPR data are given for comparison. The plumbyl radicals *PbR3 exhibit a clean monomolecular decay leading to the release of a temperature-dependent stationary concentration of branched silyl radicals. They may thus serve as tunable sources of these reactive species that may be utilized as reagents for mild radical silylations and/or as initiators for radical polymerizations. We present EPR-spectroscopic investigations for the new tin- and lead-containing compounds giving detailed insights into their electronic and geometric structure in solution, as well as structural studies on the crystalline state of the radicals, some of their anionic precursors, and some side-products.  相似文献   

6.
Silicon‐containing compounds are widely used as synthetic building blocks, functional materials, and bioactive reagents. In particular, silyl radicals are important intermediates for the synthesis and transformation of organosilicon compounds. Herein, we describe the first protocol for the generation of silyl radicals by photoinduced decarboxylation of silacarboxylic acids, which can be easily prepared in high yield on a gram scale and are very stable to air and moisture. Irradiation of silacarboxylic acids with blue LEDs (455 nm) in the presence of a commercially available photocatalyst releases silyl radicals, which can further react with various alkenes to give the corresponding silylated products in good‐to‐high yields with broad functional‐group compatibility. This reaction proceeds in the presence of water, enabling efficient deuterosilylation of alkenes with D2O as the deuterium source. Germyl radicals were similarly obtained.  相似文献   

7.
The addition of organostannyl, germyl, silyl and thiyl radicals to cyclopentadiene is examined by electron spin resonance. All of the adducts possess similar basic structures which are related to the cyclopentenyl radical but differ in their conformations. Heteroatoms consisting of tin, germanium and silicon in these adducts occupy an eclipsed position relative to the π-allylic framework, but these radicals do not have symmetrically bridged structures. Sulfur exhibits a smaller conformational effect, and the oxygen adduct is similar to the parent cyclopentenyl radical.  相似文献   

8.
《Tetrahedron letters》1997,38(39):6901-6904
The synthesis of 2-azabicyclo[3.3.1]nonanes using a radical cyclization process as the piperidine ring-forming step is described. The reaction involves 1-(carbamoyl)-dichloromethyl radicals which react intramolecularly with simple or activated alkenes, such as enol acetates or silyl enol ethers.  相似文献   

9.
Molecular orbital calculations reveal that acyl and silyl radicals add to numerous types of pi-systems through simultaneous SOMO-LUMO and LUMO-HOMO interactions of the radical with the radicalophile respectively.  相似文献   

10.
Mechanisms of the reactions of three tetrakis(trialkylsilyl)disilenes and a tetraaryldisilene with various haloalkanes such as carbon tetrachloride, chloroform, dichloromethane, which gave the corresponding 1-alkyl-2-chlorodisilanes and/or 1,2-dichlorodisilanes, were investigated in detail. As evidenced by an ESR observation of an intermediate radical, these reactions were quite unusual, forming neutral radical pairs from two closed shell molecules at the first step; no similar reactions have been observed between alkenes and haloalkanes. Low oxidation potentials of these disilenes, large negative activation entropies, and solvent effects for the rates are in good accord with the direct halogen abstraction of disilenes from haloalkanes instead of single-electron transfer at the rate-determining first step. The structure--reactivity relationship of the reactions and the Hammond postulate suggest that the transition state structures for the first step are similar to those for the halogen abstraction by silyl radicals, but more product-like.  相似文献   

11.
A highly chemo‐ and regioselective intermolecular 1,2‐aryl‐aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three‐component conjunctive cross‐coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α‐silyl amines could be transferred to α‐amino radicals by photo‐induced single electron transfer step. The radical addition/cross‐coupling cascade reaction proceeds under mild, base‐free and redox‐neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α‐aryl substituted γ‐amino acid derivatives motifs.  相似文献   

12.
The chemistry of alkoxy radicals was extensively explored during the period of 1960s to 1990s, but it has remained dormant for the past few decades. Recently, alkoxy radicals attract the attentions again, because new methods for generating alkoxy radical species have emerged. These newly developed methods are mainly based on the photolysis by visible light under mild conditions, thus allowing for new transformations of the carbon-centered radical species that are generated from the β-scission or hydrogen abstraction of the alkoxy radicals. Herein, we demonstrate that the alkoxy radicals derived from cyclic hemiacetals can be generated through visible-light-induced electron transfer with sodium iodide and triphenylphosphine as the catalyst. The alkoxy radicals subsequently undergo β-scission to generate carbon-centered radicals, which are trapped by cinnamic acids, aryl alkenes, vinylboronic acid and silyl enol ether to deliver the corresponding C—C bond forming products. This catalytic method for ring-opening alkenylation reaction of cyclic hemiacetal derivatives under visible-light irradiation conditions demonstrates the compatibility of the visible light-promoted alkoxy radical generation method with various carbon radical trapping processes. This work opens up new possibilities for the application of alkoxy radicals in organic synthesis.   相似文献   

13.
[reaction: see text] The radical trifluoromethylation of ketone silyl enol ethers gave alpha-CF(3) ketones in good yields with wide scope of the ketonic substrates including acyclic ketones and cyclopentanone. The use of dialkylzinc to activate the silyl enol ethers is the key to the efficient radical trifluoromethylation.  相似文献   

14.
N‐heterocyclic carbene (NHC) nitric oxide (NHCNO) radicals, which can be regarded as iminoxyl radicals stabilized by NHCs, were found to react with a series of silyl and alkyl triflates to generate the corresponding oxime ether radical cations. The structures of the resulting oxime ether radical cations were determined by X‐ray crystallography, along with EPR and computational analysis. In contrast, lutidinium triflate produced a 1:1 mixture of [NHCNO+][OTf?] and [NHCNHOH+][OTf?] upon the reaction with NHCNO. This study adds an important example of stable singlet carbenes for stabilizing main‐group radicals because of their π‐conjugating effect, the synthesis and structures of which have not been reported previously.  相似文献   

15.
Various silylboranes, which were outfitted with a catecholborane moiety at one end and a (Me(3)Si)(3)Si moiety at the other end of a carbon chain, were prepared through the hydroboration of the corresponding unsaturated silanes. The C-centered radical species generated from these silylboranes efficiently cyclized to provide, through a 5-exo intramolecular homolytic substitution at the silicon center, the corresponding silacycle and a Me(3)Si radical that was subsequently trapped by sulfonyl acceptors. These cyclizations proceeded at unprecedented rates, due, in part, to a strong gem-dialkyl effect that was attributable to the presence of bulky substituents on a quaternary center located on the chain. In parallel, we designed arylsilylboranes that produced silyl radicals through a 1,5-hydrogen transfer. Such silyl radicals may be valuable radical chain carriers, for instance, in oximation reactions of alkyl halides. Finally, computational studies allowed calculation of activation barriers of the homolytic substitution step and additionally illustrated that the overall reaction mechanism involved a transition state in which the attacking carbon center, the central silicon atom, and the Me(3)Si leaving group were collinear.  相似文献   

16.
Various silylated 1,4-cyclohexadienes are presented as superior tin hydride substitutes for the conduction of various radical chain reductions. Debrominations, deiodinations, and deselenations can be performed using these environmentally benign reagents. Furthermore, Barton-McCombie-type deoxygenations using silylated cyclohexadienes are described. Radical cyclizations, ring expansions, and Giese-type addition reactions with the new tin hydride substitutes are presented. The polymerization of styrene can be regulated using silylated cyclohexadienes. Rate constants for hydrogen atom abstraction from two 1-silyl-cyclohexadienes by primary C-radicals were determined. The effects of the cyclohexadiene substituents on the reaction outcomes are discussed. Finally, qualitative EPR experiments on silyl radical expulsion from silylated cyclohexadienyl radicals are presented.  相似文献   

17.
Iridium(III) complexes were designed and evaluated as efficient photoinitiators of polymerization reactions in combination with iodonium salts and silanes. Mechanistically, these reactions were shown to proceed through oxidative photoredox catalysis, generating aryl and silyl radicals under very soft irradiation conditions (blue LED, xenon lamp, and even sunlight). These radicals can initiate the free radical polymerization of acrylates or can be oxidized during the catalytic cycle to promote the ring-opening polymerization of epoxy monomers. Remarkably, both the (photo)chemical reactivity and the practical efficiency are dramatically affected by the ligands. In addition, the central role played by the oxidation ability of the excited state of the photocatalyst is discussed.  相似文献   

18.
[reaction: see text] Ab initio calculations using 6-311G**, cc-pVDZ, aug-cc-pVDZ, and a (valence) double-zeta pseudopotential (DZP) basis set, with (QCISD, CCSD(T)) and without (UHF) the inclusion of electron correlation, and density functional methods (BHandHLYP, B3LYP) predict that alpha,beta-unsaturated acyl radicals and alpha-ketenyl radicals exist as isomers. At the CCSD(T)/cc-pVDZ//BHandHLY/cc-pVDZ level of theory, energy barriers of 15.1 and 17.7-21.7 kJ mol(-)(1) are calculated for the isomerization of s-trans-propenoyl and s-trans-crotonoyl radical to ketenylmethyl and 1-ketenylethyl radical, respectively. Similar results are obtained for the reactions of s-trans isomers involving silyl, germyl, and stannyl groups with energy barriers (DeltaE++) of 12.2-12.4, 13.1-13.9, and 12.9-18.2 kJ mol(-)(1) at the CCSD(T)/DZP//BHandHLYP/DZP calculation, respectively. These results suggest that alpha,beta-unsaturated acyl radicals and alpha-ketenyl radicals are not canonical forms but are isomeric species that can rapidly interconvert.  相似文献   

19.
Silicon-containing compounds are widely used as synthetic building blocks, functional materials, and bioactive reagents. In particular, silyl radicals are important intermediates for the synthesis and transformation of organosilicon compounds. Herein, we describe the first protocol for the generation of silyl radicals by photoinduced decarboxylation of silacarboxylic acids, which can be easily prepared in high yield on a gram scale and are very stable to air and moisture. Irradiation of silacarboxylic acids with blue LEDs (455 nm) in the presence of a commercially available photocatalyst releases silyl radicals, which can further react with various alkenes to give the corresponding silylated products in good-to-high yields with broad functional-group compatibility. This reaction proceeds in the presence of water, enabling efficient deuterosilylation of alkenes with D2O as the deuterium source. Germyl radicals were similarly obtained.  相似文献   

20.
    
The geometries of α- and β-silyl substituted vinyl radicals and of α, β-disilylvinyl radical have been optimised with the STO-3G and the STO-3G * basis sets. The relative stabilities of various conformera have been determined at the UMP2/6-31G* level. The stabilisation of vinyl radicals through α-silyl substitution is larger than that due to corresponding alkyl groups. The presence of an α-silyl group also leads to a tendency towards linearisation of the vinyl radical centre and a corresponding reduction in the inversion barrier. In marked contrast, the β-silyl effect is negligible. The geometric, conformational and energetic consequences are insignificant. Overall, the silyl substituent effect at vinyl radicals is very different from that computed earlier for the vinyl cations, but qualitatively similar to that found in carbanions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号