首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two zinc(II) and cadmium(II) metal‐organic frameworks with mixed ligands, {[Zn2(biim‐4)2(TDC)2] · 2.5H2O}n ( 1 ) and {[Cd2(biim‐4)2(TDC)2 · 2H2O]}n ( 2 ) [biim‐4 = 1,1′‐(1,4‐butanediyl)bis(imidazole); H2TDC = thiophene‐2,5‐dicarboxylic acid], were hydrothermally synthesized. Both of them are characterized by elemental analysis, IR spectroscopy, and single crystal X‐ray diffraction. In 1 , the four‐connected ZnII nodes are connected by four linear ligands extending into a 3D network, which further integrates a fivefold interpenetrating diamond 3D topological network and the free water molecules distribute in void space, whereas in 2 , the CdII ions are in a distorted octahedral arrangement linked by TDC2– and biim‐4 ligands to construct a 3D framework. In topology analysis, C11 and C14 are simplified as 3‐connected nodes and the 3D framework displays a (3,5)‐connected net. Furthermore, the thermal and photoluminescent properties of 1 and 2 were also studied.  相似文献   

2.
By altering auxiliary N‐donor ligands, two ZnII compounds, [Zn3(HL)2(4,4′‐bipy)3]n ( 1 ) and [Zn4(L)2(bpp)]n ( 2 ) (H4L = 3‐(2′,4′‐dicarboxylphenoxy)phthalic acid, 4,4′‐bipy = 4,4′‐bipyridine, and bpp = 1,3‐bis(4‐pyridyl)propane), were obtained under hydrothermal conditions. Structural analyses revealed that compound 1 features a trinodal (3,4,4)‐connected 3D topological framework, and compound 2 displays a (3,8)‐connected 3D pillar‐layered framework with a tfz‐d topology. Furthermore, the thermal stabilities and the luminescent properties of compounds 1 and 2 were investigated.  相似文献   

3.
Two metal‐organic frameworks, [Co2(ABTC)(bimh)(OH)] · 2H2O ( 1 ) and [Co3(ABTC)2(dimb)4]n ( 2 ) [H3ABTC = 3,4′,5‐azobenzenetricarboxylic acid, bimh = 1,1′‐(1,4‐hexanediy)bis(imidazole), dimb = 1,4‐bis(1H‐imidazol‐1‐yl)benzene], were prepared under solvothermal conditions and structurally characterized. Complex 1 demonstrates a complicated 3D (3,8)‐connected tfz‐d net with (43)2(46.617.85) topology. The framework of 2 can be classified as a rare 3D (3,6,6)‐connected net with the Schäfli symbol of (4.62)2(42.610.83)(44.610.8), and exhibits an intriguing self‐penetrating motif. Meanwhile, the thermal stabilities and magnetic properties for 1 and 2 were also probed.  相似文献   

4.
5.
Two two‐dimensional (2‐D) trz‐based coordination polymers, {[Zn(trz)(mb)]·H2O}n ( 1 ) and {[Zn(trz)(ca)]·H2O}n ( 2 ) (Htrz = 1,2,4‐triazole, Hmb = 4‐methylbenzoic acid, and Hca = trans‐cinnamic acid), have been synthesized by diffusion method and fully structural characterized by elemental analysis, FT‐IR, single‐crystal X‐ray crystallography, TG and fluorescence spectra. Structural analysis reveals that both complexes exhibit the analogous 2‐D ZnII‐trz layer motif with hydrophobic aromatic rings attached on both sides despite their different crystal system and space group (orthorhombic, Pbca for 1 and monoclinic, P21/c for 2 ). Interestingly, the discrete water‐dimer and infinite 1‐D water‐chain were observed to be entrapped in the 2‐D layer of 1 and 2 , respectively, resulted from the different orientation of lattice water molecules as well as the patterns of hydrogen bonds involved. In addition, their similiar thermal behaviors and fluorescence emissions originated from intraligand electronic transfer were also investigated and compared.  相似文献   

6.
Two cadmium(II) entangled frameworks, Cd(BIPA)(bpe)1.5 ( 1 ) and Cd(BIPA)(bpp)(H2O) ( 2 ), were prepared by hydrothermal reactions based on rigid 5‐bromoisophthalic acid (H2BIPA) and two flexible bipyridyl ligands 1, 2‐bis(4‐pyridyl)ethane (bpe) and 1, 3‐bis(4‐pyridyl)propane (bpp). The complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction. Complex 1 is a rare example of a polycatenated array of 1D nanotubes, whereas complex 2 exhibits a three‐dimensional twofold interpenetrating diamondoid network. The analysis results reveal that the flexibility of the bipyridyl ligands plays a significant role in the structure of the final products. Moreover, the luminescent properties of the complexes were investigated.  相似文献   

7.
To explore the coordination possibilities of fluorene‐based ligands, two manganese(II) complexes with the ligand 9,9‐dibutyl‐9H‐fluorene‐2,7‐carboxylate ( L ) were synthesized and characterized: [Mn2( L )2(DMF)3] ( 1 ) and [Mn2( L )2(DMF)] ( 2 ). X‐ray single‐crystal diffraction analyses show that complex 1 has a two‐dimensional (2D) (4,4) structure, whereas complex 2 consits of a three‐dimensional (3D) (4,5)‐connected topology framework. The results indicate that the steric bulk of the fluorene ring in H2 L plays an important role in the formations of 1 and 2 . Additional pyridine‐based ligands govern the formation of the final frameworks of 2 . Moreover, the luminescent properties of these complexes were briefly investigated.  相似文献   

8.
Three multi‐dentate 1, 2,4‐triazole derivative ligands containing different 4‐substituted groups, namely N‐1, 2,4‐triazol‐4‐yl(pyridin‐3‐yl)methylenimine (L1), N‐1, 2,4‐triazol‐ 4‐yl(pyridin‐4‐yl)methylenimine (L2), and 4‐(2‐pyridine)‐1, 2,4‐triazole (L3) were used to isolate five iron(II) and zinc(II) coordination frameworks, [Zn(μ2‐L1)Cl2] ( 1 ), [Zn(μ2‐L2)Br2] ( 2 ), [Fe(L1)2(NCS)2(H2O)2] ( 3 ), [Fe(L3)2(dca)2(H2O)2] ( 4 ), and [Fe(L3)22‐dca)] ( 5 ) (dca = dicyanamide anion). When different zinc(II) salts were used to react with L1 and L2 under solvothermal conditions, two one‐dimensional (1D) zinc(II) coordination frameworks 1 and 2 containing four‐coordinate central zinc(II) atoms were isolated. 1 is a 3D achiral supra‐molecular framework, whereas 2 is a 3D chiral supra‐molecular framework containing helical chains on a 21 axis. 3 is a mono‐nuclear iron(II) coordination framework containing six‐coordinate central FeII atoms. When L3 was employed, mono‐nuclear iron(II) framework 4 and 1D iron(II) chain 5 could be isolated when different amounts of Nadca were introduced into the reaction system. Variable‐temperature magnetic susceptibility data of 3 – 5 were recorded in the 2–300 K temperature range indicating weak anti‐ferromagnetic interactions. The solid‐state luminescent properties of coordination polymers 1 and 2 were also investigated at room temperature.  相似文献   

9.
As a new type of highly ordered porous crystalline material, metal‐organic frameworks (MOFs) have been extensively studied in many fields due to their high specific surface area and porosity, flexible modifiability and tailorability. After nearly 20 years of development, the synthesis of MOF materials has gradually evolved from exploration and trial to precise design. The synthesis method has also evolved from an early one‐step synthesis to the coexistence of various synthesis strategies, including functional‐oriented microstructural design optimization, pore size adjustment, and secondary structural unit modification, enabling MOF materials to expand their potential applications in many fields. In this review, we mainly discuss the pore regulation of function‐oriented MOF through different synthesis strategies, including (1) direct synthesis, (2) post‐synthesis modification (PSM), (3) building block replacement (BBR), (4) pore space partition (PSP), (5) construction of multi‐mesoporous MOF, (6) dynamic septal ligand insertion, and discuss the relationship between related performance optimization through framework structure and pore environment/size optimization.  相似文献   

10.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

11.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

12.
Two rare earth metal‐organic framework compounds [Ybsip(H2O)5] · 3H2O ( 1 ) and [Dysip(H2O)4] ( 2 ) (NaH2sip: 5‐sulfoisophthalic acid sodium salt) were synthesized hydrothermally, and characterized by single‐crystal X‐ray diffraction, elemental analysis, and FT‐IR spectroscopy. In complex 1 , each YbIII atom is nine‐coordinate with a distorted monocapped tetragonal prismatic arrangement. Two carboxylate groups of each sip3– molecule adopt the same μ1‐η11 chelating coordination model connecting two YbIII atoms. The oxygen atoms of the sulfonate group do not participate in coordination with YbIII. The whole sip3– molecule acts as a μ2 bridge to form an one‐dimensional (1D) chain structure. The 1D chains are linked by hydrogen bonding to generate two‐dimensional layers, and are further combined together to form a three‐dimensional structure. In complex 2 , the DyIII atom is nine‐coordinate with a distorted monocapped tetragonal antiprismatic arrangement. In each sip3– anion, two carboxylate groups take the same μ1‐η11 chelating coordination mode, only an oxygen atom of sulfonate group bond to DyIII ion. The whole ligand sip3– acts as a μ3 bridge linking three different DyIII ions to generate a wave‐like two‐dimensional network with (6,3) topological structure. The two‐dimensional networks are further linked by O–H ··· O hydrogen bonds to form a three‐dimensional structure. The thermal and luminescent properties of both complexes are investigated.  相似文献   

13.
The polymers [Cd(L)(H2O)] ( 1 ) and [Zn(L)(4, 4′‐bipy)(H2O)3] ( 2 ) (L = 2, 2‐dimethylsuccinated anion) were synthesized under hydrothermal conditions and characterized by IR spectrosopy, elemental analyses, and single‐crystal X‐ray diffraction analysis. The latter reveals that the polymer 1 exhibits a four‐connected dia‐topology net based on the novel tetranuclear CdII units, whereas polymer 2 displays a 4‐connnected CdSO4 topology net. Moreover, the photoluminescent properties of 1 and 2 were investigated.  相似文献   

14.
Two transition metal‐organic coordination polymers, [Mn2(1,3‐bdc)2(Me2bpy)2] · Me2bpy ( 1 ) and [Co(4,4′‐oba)(Me2bpy)] ( 2 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray diffraction [1,3‐H2bdc = benzene‐1,3‐dicarboxylic acid, H2oba = 4,4′‐oxybis(benzoic acid) Me2bpy = 4,4′‐dimethyl‐2,2′‐bipyridine]. Compound 1 crystallizes in the orthorhombic system, space group P212121, with a = 23.371(5), b = 14.419(3), and c = 14.251(3) Å. Compound 2 crystallizes in the monoclinic system, space group P21/c, with a = 7.4863(15), b = 18.272(4), c = 16.953(5) Å, and β = 107.44(3)°. The crystal structure of complex 1 is a wave‐like layer with central Mn2+ atoms bridged by 1,3‐bdc ligands, whereas the structure of compound 2 presents a ladder chain of hexacoordinate Co2+ atoms, in which the metal atoms are bridged by 4,4′‐oba ligands and decorated by Me2bpy ligands. The two compounds are further extended into 3D supramolecular structures through π–π stacking interactions. Additionally, the compounds show intense fluorescence in solid state at room temperature.  相似文献   

15.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

16.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

17.
We report on a new series of isoreticular frameworks based on zinc and 2‐substituted imidazolate‐4‐amide‐5‐imidate (IFP‐1–4, IFP=imidazolate framework Potsdam) that form one‐dimensional, microporous hexagonal channels. Varying R in the 2‐substitued linker (R=Me (IFP‐1), Cl (IFP‐2), Br (IFP‐3), Et (IFP‐4)) allowed the channel diameter (4.0–1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP‐2, IFP‐3 and IFP‐4 are isostructural to previously reported IFP‐1. The structures of IFP‐2 and IFP‐3 were solved by X‐ray crystallographic analyses. The structure of IFP‐4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP‐MAS NMR spectroscopy. All IFPs showed high thermal stability (345–400 °C); IFP‐1 and IFP‐4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP‐1–4 under dry conditions and that both CO2 and H2O are physisorbed on IFP‐1 under moist conditions.  相似文献   

18.
S‐heterocyclic dicarboxylic acid, thiophene‐2,5‐dicarboxylic acid (H2TDC), was employed to construct a series of lanthanide‐organic frameworks (LnOFs) with coligand acetate, formulated as [Ln(TDC)(OAc)(H2O)]n [Ln = Eu ( 1 ), Tb ( 2 ), Gd ( 3 ), Dy ( 4 ), Sm ( 5 )] under hydrothermal conditions. Structure analysis reveals that 1 – 5 have dinuclear 3D metal organic frameworks (MOFs), in which TDC2– and OAc display (κ1‐κ1)‐(κ1–κ1)‐μ4 and (κ2‐κ1)‐μ2 coordination fashions, respectively. The dehydrated products of all compounds show high thermal stability above 410 °C. As for 1 , 2 , 4 , and 5 , the photoluminescence analyses exhibit characteristic luminescence emission bands of the corresponding lanthanide ions in the visible region. In particular, compound 2 displays bright green luminescence in the solid state with 5D4 lifetime of 0.510 ms and relative high overall quantum yield of 16 %, based on an ideal energy gap between the lowest triplet state energy level of H2TDC ligand and the 5D4 state energy level of Tb3+. The energy transfer mechanisms in compounds 1 and 2 were also discussed.  相似文献   

19.
Two MOFs of [SrII(5‐NO2‐BDC)(H2O)6] ( 1 ) and [BaII(5‐NO2‐BDC)(H2O)6] ( 2 ) have been synthesized in water using alkaline earth metal salts and the rigid organic ligand 5‐NO2‐H2BDC. The compounds were characterized by elemental analysis, infrared spectrum, thermal analysis, and X‐ray crystallography. Crystal structure analyses have shown that the two complexes are isostructural as evidenced by IR spectra and TG‐DTA. Both compounds present three‐dimensional frameworks built up from infinite chains of edge‐sharing twelve‐membered rings through O–H···O hydrogen bonds. The specific heat capacities of the title complexes have been determined by an improved RD496‐III microcalorimeter with the values of (109.29 ± 0.693) J mol−1 K−1 and (81.162 ± 0.858) J mol−1 K−1 at 298.15 K, and the molar enthalpy changes of the formation reactions of complexes at 298.15 K were calculated as (4.897 ± 0.008) kJ mol−1 and (2.617 ± 0.009) kJ mol−1, respectively.  相似文献   

20.
《中国化学》2017,35(12):1869-1874
A metal‐organic framework (MOF ) formulated as [Cd23‐L)2(DMF )4]•H2O ( CdL ) [H2L =9‐(pyridin‐4‐yl)‐ 9H ‐carbazole‐3,6‐dicarboxylic acid, DMF =N ,N ‐dimethylformamide] was synthesized under solvothermal condition. Crystal structural analysis reveals that CdL features the layered 2D framework with L2 ligands as 3‐connected nodes. The compound CdL emits blue‐violet light with the narrow emission peak and the emission maximum at 414 nm upon excitation at the maximum excitation wavelength of 340 nm. The compound CdL has a similar emission spectrum curve to the free H2L ligand that indicates the emission of compound CdL should be originated from the coordinated L2 ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号