首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three copper(II) coordination polymers, namely, {[CuL(H2O)2] · 4H2O}n( 1 ), [CuL(H2O)(DMF)]n( 2 ), and [CuL(2, 2′‐bipy)(DMSO)] · DMSO ( 3 ) [H2L = 2, 2′‐(4, 6‐dinitro‐1, 3‐phenyl‐enedioxy)diacetic acid] were synthesized in different solvents (H2O, DMF, and DMSO). X‐ray single crystal diffraction studies show that both complexes 1 and 3 belong to triclinic crystal system and P$\bar{1}$ space group and complex 2 belongs to the monoclinic crystal system and P21/c space group. In three complexes, all the central CuII ions coordinate with the ligand, forming a square pyramidal configuration. Both complexes 1 and 2 show similar 1D chain‐like structure and the chains are further connected by hydrogen bonds, forming 3D frameworks. Complex 3 exhibits a 0D structure due to the introduction of the ligand 2, 2′‐bipy. In addition, the luminescence properties of these complexes were investigated.  相似文献   

2.
Self‐assembly of Zn (II) or Cd (II) nitrates, flexible bis (pyridyl)‐diamine, as well as arenesulfonic acids, leads to the formation of ten coordination polymers, namely, [Zn(L1)(H2O)3]·2(p‐TS)·2H2O ( 1 ), [Zn(L1)(H2O)2]·2(p‐TS)·2H2O ( 2 ), [Zn(L1)2(p‐TS)2] ( 3 ), [Zn(H2L1)(H2O)4]·2(1,5‐NDS)·2H2O ( 4 ), [Zn(H2L2)(H2O)4]·2(1,5‐NDS)·4MeOH ( 5 ), [Cd(L1)(p‐TS)(NO3)]·H2O ( 6 ), [Cd(L1)(1,5 ‐NDS)0.5(H2O)]·0.5(1,5‐NDS)·H2O ( 7 ), [Cd(L2)(H2O)2]·(p‐TS)·(NO3)·3H2O ( 8 ), [Cd(L2)(1,5‐NDS)] ( 9 ) and [Cd(L2)(1,5‐NDS)]·MeOH ( 10 ) (L1 = N,N′‐bis (pyridin‐4‐ylmethyl) ethane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethy l)ethane‐1,2‐diamine, p‐HTS = p‐toluenesulfonic acid, 1,5‐H2NDS = 1,5‐naphthalene disulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single‐crystal X‐ray diffraction. Complexes 1 , 4 , 5 and 6 present linear or zigzag chain structures accomplished by the interconnection of adjacent M (II) cations through L1 ligands or protonated H2L12+/H2L22+ cations, while complexes 2 , 3 and 8 show similar (4,4) layer motifs constructed from the connection of M (II) cations through L1 and L2. The same coordination modes of L1 and L2 in complexes 7 and 9 join adjacent Cd (II) cations to form double chain structures, which are further connected by bis‐monodentate 1,5‐NDS2? dianions into different (6,3) and (4,4) layer motifs. The L2 molecules in complex 10 join adjacent Cd (II) cations together with 1,5‐NDS2? dianions to form 3D network with hxl topology. Therefore, the diverse coordination modes of the bis (pyridyl) ligand with chelating spacer and the feature of different arenesulfonate anions can effectively influence the architectures of these complexes. Luminescent investigation reveals that the emission maximum of these complexes varies from 374 to 448 nm in the solid state at room temperature, in which complexes 4 , 5 , 7 , 9 and 10 show average luminescence lifetimes from 7.20 to 14.82 ns. Moreover, photocatalytic properties of complexes 7–10 towards Methylene blue under Xe lamp irradiation are also discussed.  相似文献   

3.
Slow diffusion reaction of 2,2′‐dithiodibenzoic acid (dtdb) with CuCl2 in the presence of N‐donor ligands results in the formation of different coordination polymers where both S–S and C–S scission and oxidation of S is observed. X‐ray diffraction analysis of [Cu(tdb)(phen)(H2O)]2 · 2H2O.2DMF] ( 1 ), [Cu(tdb)(py)2(H2O)]2 ( 3 ), and [Cu(tdb)(bipy)(H2O)]2 · 0.5H2O ( 4 ) (tdb = thiodibenzoic acid, phen = phenanthroline, py = pyridine, bipy = 2,2′‐bipyridine) show that the metal ions are coordinated to the carboxylate oxygen atoms of the in situ generated tdb ligand in a monodenate fashion. In [Cu(phen)(SO4)2(H2O)2]n ( 2 ) and [Cu(bipy)(SO4)2(H2O)2]n ( 5 ), the sulfur is oxidized to sulfate ions prior to coordination with the metal. Complex 1 has a dimeric structure with π–π interactions between the phen ligands, whereas 3 and 4 form 1D polymeric chains.  相似文献   

4.
Two cobalt(II) coordination polymers, {[Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]·(OH)3·(Me4N)·4,4′‐bipy·4H2O}n ( 1 ) and {[Co(μ‐4,4′‐bipy)(H2O)4]·suc·4H2O}n ( 2 ) (4,4′‐bipy = 4,4′‐bipyridine, suc = succinate dianions), were hydrothermally synthesized and structurally characterized by X‐ray diffraction analysis, UV‐Vis‐NIR, and ICP. The main structure feature common to the both polymers is presence of the infinite linear chains, [Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]n ( 1 ) and [Co(μ‐4,4′‐bipy)(H2O)4]n ( 2 ), respectively. In 1 , the chains are further linked by the hydrogen‐bond and π‐π stacking interaction, producing extended layer structure. The 4,4′‐bipy molecules in 1 play three different roles. In 2 , the chains are linked into three‐dimensional network structure via complicated hydrogen bonding system. The variable temperature (2.0~300 K) magnetic susceptibility of 1 indicates a tendency of spin‐transition in the temperature range of 110 K to 22 K, which attributes to the transition of high‐spin to low‐spin from Co2+(d7) ion. Also, the result of surface photovoltage spectroscopy (SPS) reveals that the polymer 1 has significant photoelectric conversion property in the region of 300‐800 nm.  相似文献   

5.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   

6.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

7.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

8.
Four novel mixed‐ligand complexes were obtained from the reaction of maleic acid, diimine chelating ligands and Cd(OH)2 or CdO in a mixed solvent of water and methanol. The complexes were characterized by IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. The results show that all the four complexes are coordination polymers. [Cd(phen)(H2O)(male)]n · 2nH2O ( 1 ) and [Cd(bipy)(H2O)(male)]n · 2nH2O ( 2 ) (male = maleate; phen = 1, 10‐phenanthroline, bipy = 2, 2′‐bipyridine) are isomorphic, and the asymmetric unit is constructed by one CdII atom, a maleate group, a diimine ligand and two crystal water molecules. Each maleate group links two CdII atoms in a bis(bidentate) chelating mode, resulting in a 1D helical chain. Within [Cd(phen)(H2O)2(male)]n · 2nH2O ( 3 ), the maleate group bridges two CdII atoms in a bis(monodentate) chelating mode into a 1D helical chain along the [100] direction. The helical chain is decorated by phen groups alternatively at the two sides, and each phen plane of one chain is inserted in the void space between two adjacent phen ligands from an adjacent chain, resulting in a double zipper‐like chain. The asymmetric unit of [Cd2(phen)2(male)2]n ( 4 ) contains a CdII cation, one phen molecule, and a maleate group, and one bridging maleate group links three CdII atoms resulting in a 2D layer extending in [011] plane. The 2D networks are constructed by four kinds of rings formed by the central metal atom and maleate dianion. The thermostabilities of the four complexes were investigated.  相似文献   

9.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

10.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

11.
The β‐diketonate derivative ligand [H2L = 6‐(3‐hydroxy‐1‐oxo‐3‐pyrryl‐2‐propen‐1‐yl)‐2‐pyridinecarboxylic acid] and its zinc(II) coordination complexes, [Zn(H2L)Cl2] · (EtOH)(H2O) ( 1 ) and [Zn4(L)4(H2O)2] · 5H2O ( 2 ), were prepared and characterized by elemental analysis, IR and NMR spectroscopy, and single‐crystal X‐ray diffraction. Complex 1 is a mononuclear structure. Complex 2 is a [2 × 2] grid tetranuclear structure. The luminescent properties of the free ligand H2L and complexes 1 and 2 in methanol solution were studied.  相似文献   

12.
Hydrothermal reactions of cadmium precursors with 2, 2′‐bipyridine, fumaric acid or NaN3 in basified aqueous solutions gave rise to two cadmium complexes [Cd(bipy)(fum)(H2O)]n ( 1 ), and [Cd(bipy)(μ1, 1‐N3)2]n ( 2 ) (fum = fumarate dianion), which were characterized by X‐ray crystallography. Complex [Cd(bipy)(fum)(H2O)]n ( 1 ) crystallizes in the orthorhombic system, space group Pbca, with a = 9.0488(8), b = 16.246(3), c = 19.810(4) Å, and Z = 8 while complex [Cd(bipy)(μ1, 1‐N3)2]n ( 2 ) in the monoclinic system, space group C2/c, with a = 12.378(3), b = 14.788(3), c = 6.6139(13) Å, β = 91.49(3)°, and Z = 4. The photoluminescence spectra for compounds 1 and 2 have also been studied.  相似文献   

13.
采用水热法设计合成了两个新型的配位聚合物{[Cu2(egta)(bpe)(H2O)2]·H2O}n (1) 和 {[Cu2(egta)(bipy)(H2O)2]·5H2O}n (2) (其中H4egta =乙二醇双(α-氨基乙基)醚四乙酸, bpe = 1,2-双(4-吡啶)乙烷, bipy = 4,4’-联吡啶),晶体结构分析表明,它们均是单斜晶系,P21/c 空间群。其中,配合物1 是依靠相邻一维 “之”字链间的氢键互锁而展现二重平行的(4,4)网状穿插结构;然而,配合物2 通过内消旋螺旋链堆积而形成的二维超分子结构。有趣的是,在配合物2的主体结构中,封装着由独特的五聚水簇通过水-水之间的相互作用形成的一维水带。磁学性质研究表明,配合物1两个相邻的铜离子之间存弱的铁磁交换作用。  相似文献   

14.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

15.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

16.
Five new transition metal complexes [Cu(HL)2(H2O)2] ( 1 ), [Cu(HL)2(phen)] ( 2 ), [Cu(HL)2(H2O)]2(4,4′‐bipy) ( 3 ), [Zn(HL)2(H2O)2]·(4,4′‐bipy) ( 4 ), [Ag(HL)(4,4′‐bipy)]n ( 5 ), (H2L=5‐chloro‐1‐phenyl‐1H‐pyrazole‐3,4‐dicarboxylic acid, phen=1,10‐phenanthroline; 4,4′‐bipy=4,4′‐bipyridine) have been synthesized and characterized. Complexes 1 , 2 and 4 exhibit monomeric structures, 3 shows a dinuclear structure, 5 displays 1D chain structure, and all extend to 3D supramolecular network via rich hydrogen bonds. Complexes 1 , 2 , 3 , 5 comprise single helical chains, while complex 4 generates quadruple‐stranded helical chains. Furthermore, the antibacterial activities of the titled complexes against bacterial species, three Gram positive bacteria (Staphylococcus aureus, Bacillus subtilis and Candida albicans) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were studied and compared to the activities of free ligands by using the microdilution method.  相似文献   

17.
Three two‐dimensional (2D) coordination complexes, namely [Ca2(HL)2(H2O)5]n · 2nH2O ( 1 ), [Sr(HL)(H2O)3]n · nH2O ( 2 ), and [Ba(HL)(H2O)3]n · nH2O ( 3 ) [H3L = 3‐(3‐carboxy‐phenoxy) phthalic acid], were synthesized by using the ligand H3L and alkaline earth metals. Structural analysis reveals that the structures of complexes 1 – 3 can be described as 2D networks with the point (Schälfli) symbol for net: {312 · 414 · 52} topology. Additionally, the thermal stability and solid‐state luminescent properties of compounds 1 – 3 were investigated at room temperature. The quantum yield (QY) of compound 2 is 10.75 %, which is much higher than the QY of the free H3L ligand (QYH3L < 1 %).  相似文献   

18.
通过水热合成技术,一个新颖的基于Zn配合物修饰的Keggin型钴钨酸的有机-无机杂化化合物:[Zn(2,2’-bipy)3]3{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2 }.H2O已经被合成,化合物通过红外光谱、热重分析和单晶X-射线衍射进行了表征。单晶X-射线衍射的结果显示标题化合物是由一个单支撑的{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2}6-多阴离子,三个[Zn(2,2’-bipy)3]2+阳离子和一个水分子构成。有趣的是[Zn(1)(2,2’-bipy)3]2+阳离子通过氢键连接在一起形成螺旋链。另外标题化合物在空气中是稳定的,并且在室温下显示了强的荧光。  相似文献   

19.
Two new CoII coordination polymers [Co4(tbip)4(bipy)4(H2O)4] ( 1 ) and [Co(tbip)(phen)(H2O)] · H2O ( 2 ) (H2tbip = 5‐tert‐butyl isophthalic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 is a tbip‐bridged tetranuclear cobalt(II) complex, which is further linked by hydrogen bonds to form a supramolecular network. Compound 2 shows a tbip‐bridged linear chain structure, which is extended by hydrogen bonds to generate a double chain. Magnetic measurements show that there are weak ferromagnetic interactions between the adjacent CoII ions in 1 .  相似文献   

20.
The chelating organic ligands of 2,2’-bipyridine (2,2’-bipy), di(pyrid-2-yl)amine (dpa) and 2,6-di(pyrid-2-ylamino)pyridine (dpap) were respectively applied to react with H2fum (fumaric acid) and copper salts, affording three different complexes [Cu2(fum)(2,2’-bipy)4]•2ClO4 (1), [Cu2(µ-OH)2(fum)(dpa)2]•2H2O (2) and [Cu(SO4)(H2O)(dpap)]•H2O (3). These complexes were determined by single-crystal X-ray diffraction. Each penta-coordinated Cu(II) ion exhibits a distorted trigonal bipyramidal geometry in 1. The fum ligand links copper ions to form a dinuclear copper unit. While in 2, the fum ligands connect [Cu2(µ-OH)2(dpa)2] unit to construct a 1D zigzag chain. Unexpectedly, when dpap instead of dpa was used under the same conditions, only one mononuclear complex 3 was formed. Crystal packings show that 1—3 form 3D supramolecular architectures through non-covalent interactions (multiple hydrogen bonds and C—H…π/π-π interactions). In addition, the study of the magnetic property reveals dominating ferromagnetic interactions between Cu(II) atoms in 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号