首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Energy dispersive X‐ray fluorescence (EDXRF) is widely used in the study of archeological metal artifacts, heritage and art history, where the fragile nature of the objects requires the use of noninvasive techniques such as the EDXRF, which in addition, is fast and very affordable. An EDXRF analysis of copper‐based artifacts from Late Bronze Age metal hoards from Central Portugal is presented. The EDXRF measurements were carried out by using an X‐ray tube with a Mo anode and a commercial Si‐PIN detector. The data acquisition was performed by keeping small distances between the X‐ray window, the sample and the detector. Both patinated and polished areas were analyzed: the relative composition of the artifacts was inferred from the fluorescence spectra obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The first monochromatic X‐ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X‐ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point‐spread function for the X‐ray imaging system and harmonic contamination of the X‐ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X‐ray spectrum prior to monochromatization, allowance for the response of the double‐crystal Si monochromator used (via X‐ray dynamical theory), as well as a thorough assessment of the role of X‐ray phase‐contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point‐spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X‐ray tomography data, across a wide range of disciplines, including materials and life sciences.  相似文献   

3.
A mathematical model for the two‐layer composite Si‐Ge energy dispersive X‐ray detector is proposed, based on analyses of radiation and electron transport in the detector, and a mathematical model of an energy dispersive X‐ray fluorescent spectrometer with the detector is considered. The Monte Carlo method is applied to calculate probabilities of photon detection in different parts of the detector's response function. The composite detector with the time anti‐coincidence scheme is proposed; its first layer is Si detector, and the second layer is Ge detector. It is shown that this composite detector has some advantages, such as reduced Ge photo escape peaks intensities and efficiency of detection of high energy photons similar to efficiency of Ge detector. Applying the X‐ray detector for the energy dispersive X‐ray fluorescent spectrometer provides for a lower background level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Typically, X‐ray absorption near‐edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal‐to‐background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X‐ray regime with reasonable efficiency requires solid‐state detectors, which have limitations due to the inherent dead‐time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy‐dependent efficiency non‐linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X‐ray detectors is a viable method for measuring soft X‐ray partial fluorescence yield spectra without dead‐time. The feasibility of this technique is further demonstrated using α‐Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X‐ray‐induced damage.  相似文献   

5.
The energy spectrum analysis of X‐ray intensities with semiconductor detectors is often difficult because their energy resolution is usually not good enough to separate the different X‐ray lines. Metallic magnetic calorimeters (MMCs) can be an alternative; they can offer both high energy resolution and high intrinsic detection efficiency from 0 to 100 keV. MMCs are thermal detectors; that is to say, the energy of each absorbed photon is measured as a temperature elevation. At very low temperature, typically few tens of mK, a very large pulse height‐to‐noise ratio can be obtained that is an essential condition for high energy resolution. We are involved in the development of MMCs for metrology applications such as the determination of hard X‐ray emission intensities. For that purpose, we conceived an MMC with an energy resolution of 57 eV around 30 keV. The absorber is made of gold providing high intrinsic detection efficiency even for a small volume, greater than 90% below 60 keV. We will describe the physical principle and the practical realisation of this detector and discuss its performances by analysing the energy spectrum obtained from a 133Ba source. Preliminary outcomes of relative emission intensities of the K X‐ray of cesium are presented and compared with other experimental data and theoretical calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The Pixium 4700 detector represents a significant step forward in detector technology for high‐energy X‐ray diffraction. The detector design is based on digital flat‐panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 × 2480 pixels with a pixel size of 154 µm × 154 µm, and thus it covers an effective area of 294 mm × 379 mm. Designed for medical imaging, the detector has good efficiency at high X‐ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high‐energy X‐ray diffraction are presented. Quantitative comparisons with a widespread high‐energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point‐spread function and distortion‐free image, allows for the acquisition of high‐quality diffraction data at high X‐ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.  相似文献   

7.
Apparatus for a technique based on the dispersive optics of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X‐ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line‐shaped X‐ray beam is transmitted through the electrode sample, and then the dispersed transmitted X‐rays are detected by a two‐dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X‐ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space‐resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X‐ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.  相似文献   

8.
9.
Relative line intensities of L1, L2 and L3 sub‐shell X‐rays were measured for Er, Tm, Yb, Hf, Ta, W, Pt and Au. The L‐shell X‐ray spectra were recorded by exciting pure element samples (eight cases) and oxide samples (two cases) with approximately 17‐keV exciting radiation from a filtered X‐ray tube source, and measuring the fluorescence spectra with a silicon drift detector. The spectra were carefully fitted to determine line energies and intensities, accounting for Lorentzian line broadening, incomplete charge collection and escape effects. A Monte Carlo approach was used to calculate attenuation and detector efficiency corrections. We report up to 15 line intensity ratios for each element and compare these to Scofield's theoretical predictions and Elam's extrapolated experimental database. Our measured relative line intensities agree best with Elam's data, but overall we find significant discrepancies with previously reported results. For the element Ta, we also find significant errors in the accepted L‐shell line energies in the widely used National Institute of Standard and Technology (NIST) database. Our results highlight the need for an experimental and theoretical re‐evaluation of L‐shell intensity databases to support high‐accuracy X‐ray analysis methods such as X‐ray fluorescence and particle‐induced X‐ray emission. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A Si PIN detector for visible light detection, instead of a Geiger‐Müller tube, is applied to X‐ray photon counting. We counted radiation from a checking source of a Geiger‐Müller counter with a Si PIN counter and with a Geiger‐Müller counter. White X‐ray of energy up to 20 keV emitted from a pyroelectric X‐ray emitter was also counted, and the Si PIN X‐ray counter showed a similar curve of count rate versus source distance in both measurements. Pulse counting was performed by spectroscopy circuits. An audio digitizer with computer software for signal processing was also used to simplify the photon counter. A plot of count rate versus time was obtained with this setup. With simple pulse counting circuits, Si PIN X‐ray counters have advantages such as compact structure, low cost and easy application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
《X射线光谱测定》2005,34(6):473-476
Energy dispersive X‐ray spectrometry offers the opportunity for fast composition determination of specimens by X‐ray fluorescence or electron probe microanalysis. For fundamental parameter based quantification, the knowledge of the detection efficiency of the spectrometer is essential. At low energies the efficiency is strongly influenced by X‐ray absorption in the radiation entrance window. State‐of‐the‐art windows consist of polymer foil containing C, N, and O, coated with Al and in some cases with a special B compound. The foil is supported by a Si grid to withstand the atmosphere pressure. The absorption of all these components must be known to describe the detection efficiency. The transmittance of three types of widely used commercial windows has been measured. Transmittance curves have been fitted by analytical expressions using tabulated mass absorption coefficients. Because tabulated mass absorption coefficients do not consider near edge effects, there are strong deviations between measured and calculated transmittance below 0.6 keV. It is proposed to model the spectrometer efficiency by the measured window transmittance and calculated absorptions from front contact and possible contaminations. This reduces the number of unknown parameters drastically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The design and performance characterization of a new light‐weight and compact X‐ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third‐generation Diamond synchrotron facility where X‐ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X‐rays (peak stability, light yield linearity and response consistency). Here, the results obtained from these tests are reported, and the suitability of the design for the Diamond powder beamline is demonstrated by presenting diffraction data obtained from a silicon powder standard using a prototype multicrystal analyser stage.  相似文献   

13.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

14.
The shallow interrogation depth of the lightest elements (Na, Mg, Al, and Si) detected by the particle‐induced X‐ray emission branch of the Curiosity Rover's alpha particle X‐ray spectrometer suggests that the X‐rays of these elements very likely emerge from a single mineral grain. This reality violates the assumption of atomic homogeneity at the micron scale made in both existing spectrum‐reduction approaches for the alpha particle X‐ray spectrometer. Consequently, analytical results for these elements in igneous geochemical reference materials exhibit deviations from certified concentrations in a manner that can be related to the total alkali‐silica diagram. A computer code is introduced here to provide quantitative prediction of these deviations using the mineral abundances determined from X‐ray diffraction. The latter are converted to area coverage fractions to represent the sample surface, and a fundamental parameters computation predicts the elemental X‐ray yields from each mineral and sums these. In this process, the chemistry of each individual mineral has to be varied by an iterative simplex approach; X‐ray yields are computed and compared with the peak areas from the fit of the bulk sample. When the difference between mineral yields and peak areas for each element are minimized, the mineral formulae are set and elemental X‐ray yields provided. The ratio between the summed mineral X‐ray yields and the corresponding yields based on the homogeneity assumption may then be compared directly with the concentration deviations measured in our earlier work. For several rock types, good agreement is found, thereby consolidating our understanding of the effects of sample mineralogy on alpha particle X‐ray spectrometer results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The performance of a diamond X‐ray beam position monitor is reported. This detector consists of an ionization solid‐state chamber based on a thin single‐crystal chemical‐vapour‐deposition diamond with position‐sensitive resistive electrodes in a duo‐lateral configuration. The detector's linearity, homogeneity and responsivity were studied on beamlines at Synchrotron SOLEIL with various beam sizes, intensities and energies. These measurements demonstrate the large and homogeneous (absorption variation of less than 0.7% over 500 µm × 500 µm) active area of the detector, with linear responses independent of the X‐ray beam spatial distribution. Due to the excellent charge collection efficiency (approaching 100%) and intensity sensitivity (0.05%), the detector allows monitoring of the incident beam flux precisely. In addition, the in‐beam position resolution was compared with a theoretical analysis providing an estimation of the detector's beam position resolution capability depending on the experimental conditions (X‐ray flux, energy and readout acquisition time).  相似文献   

16.
The recent developments in X‐ray detectors have opened new possibilities in the area of time‐resolved pump/probe X‐ray experiments; this article presents the novel use of a PILATUS detector to achieve X‐ray pulse duration limited time‐resolution at the Advanced Photon Source (APS), USA. The capability of the gated PILATUS detector to selectively detect the signal from a given X‐ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of α‐perylene illustrates the possibility of reaching an X‐ray pulse duration limited time‐resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X‐ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline.  相似文献   

17.
The combination of a pn‐junction charge‐coupled device‐based pixel detector with a poly‐capillary X‐ray optics was installed and examined at the Helmholtz‐Zentrum Dresden‐Rossendorf. The set‐up is intended for particle‐induced X‐ray emission imaging to survey the trace elemental composition of flat/polished geological samples. In the standard configuration, a straight X‐ray optics (20 μm capillary diameter) is used to guide the emitted photons from the sample towards the detector with nearly 70 000 pixels. Their dimensions of 48 × 48 μm2 are the main limitation of the lateral resolution. This limitation can be bypassed by applying a dedicated subpixel algorithm to recalculate the footprint of the photon's electron cloud in the detector. The lateral resolution is then mainly determined by the capillary's diameter. Nevertheless, images are still superimposed by the X‐ray optics pattern. The optics' capillaries are grouped in hexagonal bundles resulting in a reduced transmission of X‐rays in the boundary regions. This influence can be largely suppressed by combining a series of short measurements at slightly shifted positions using a precision stage and correcting the image data for this shifting. The use of a subpixel grid for the image reconstruction allows a further increase of the spatial resolution. This approach of image‐stacking and multiframe super‐resolution in combination with the subpixel correction algorithm is presented and illustrated with experimental data. Additionally, a flat‐field correction is shown to remove the remaining imaging inhomogeneity caused by non‐uniform X‐ray transmission. The described techniques can be used for all X‐ray spectrometry methods using an X‐ray camera to obtain high‐quality elemental images.  相似文献   

18.
The implementation of a laser pump/X‐ray probe scheme for performing picosecond‐resolution X‐ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top‐up mode, a pixel array X‐ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ~2.5 × 106 photons pulse?1 at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X‐ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X‐ray spot. Transient photo‐induced strain in BiFeO3 film was observed at a ~150 ps time resolution for demonstration.  相似文献   

19.
A dedicated in‐vacuum X‐ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four‐crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small‐angle X‐ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing‐incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.  相似文献   

20.
Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X‐ray beam position monitor based on a super‐thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm‐thick membrane obtained by argon–oxygen plasma etching the central area of a CVD‐grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X‐ray beam. The diamond plate was of moderate purity (~1 p.p.m. nitrogen), but the X‐ray beam induced current (XBIC) measurements nevertheless showed a photo‐charge collection efficiency approaching 100% for an electric field of 2 V µm?1, corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal‐to‐dark‐current ratio of the device was greater than 105, and the X‐ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号