首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of CrO2Cl2 with 2, 2′‐bipyridyl or 1, 10‐phenanthroline (diimine) in CCl4 or anhydrous CH3CO2H solution, produces orange‐brown diamagnetic [CrO2Cl2(diimine)]. The X‐ray structure of [CrO2Cl2(2, 2′‐bipy)] shows a six‐coordinate central chromium(VI) atom with cis‐dioxo groups trans to the diimine. In contrast, the diimines react with CrO3 in CH3CO2H / conc. aqueous HCl to form bright red paramagnetic CrV complexes, [CrOCl3(diimine)]. The X‐ray structure of [CrOCl3(2, 2′‐bipy)] shows a six‐coordinate central chromium atom with mer‐chlorines and the diimine trans to O/Cl. The addition of [2, 2‐bipyH2]Cl2 to a solution of CrO3 in CH3CO2H saturated with HCl gas, produces the CrV anion [2, 2′‐bipyH2][CrOCl4]Cl, which loses HCl on heating in vacuo to form [CrOCl3(2, 2′‐bipy)]. IR, UV/Vis, and 1H NMR spectra (CrVI only) are reported for the new complexes. Attempts to extend these routes to oxygen donor ligands, including ethers and phosphine oxides, were unsuccessful. The diimine complexes are the first structurally autheticated adducts of chromium(VI) and (V) oxide‐chlorides with neutral ligands.  相似文献   

2.
The N‐heterocyclic carbene‐stabilized chromium(II) alkyl, aryl, and alkynyl complexes (IPM)2CrR2 [R = Me ( 2 ), Ph ( 3 ), C≡CPh ( 3 ); IPM = 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene] were prepared by metathesis reactions of (IPM)2CrCl2 ( 1 ) with the corresponding organolithium reagents. Further reaction of 3 with an organic azide, 1‐azidoadamantane, yielded an organonitridochromium(V) compound (IPM)2Ph2Cr≡N ( 5 ). Compounds 2 – 5 are fully characterized by 1H NMR and IR spectroscopy, X‐ray crystallography as well as by elemental analysis. The structural analysis shows that the metal atom adopts a nearly square‐planar arrangement in the respective 2 , 3 , and 4 and a square‐pyramidal one in 5 . The reaction of 3 with the organic azide to 5 appears a novel way to the organonitridochromium compound.  相似文献   

3.
The reaction of solution 2,6‐pyridinedicarboxylic acid and 1,10‐phenanthroline ( 1 ) with CrCl3·6H2O led to the complex [Cr(phen)(pydc)(H2O)][Cr(pydc)2]·4H2O ( 2 ) (phen is 1,10‐phenanthroline and pydcH2 is 2,6‐pyridinedicarboxylic acid). 2 was characterized by elemental analysis, IR spectroscopy and single‐crystal structure determination. Crystal data for 2 at ?80 °C: triclinic, space group , a = 818.5(1), b = 1492.2(1), c = 1533.6(2) pm, α = 76.45(1)°, β = 84.22(1)°, γ = 77.99(1)°, Z = 2, R1 = 0.0416.  相似文献   

4.
The single‐crystal X‐ray structure analysis of hexakis(2,4,6‐triisopropylphenyl)cyclotristannoxane, cyclo‐[(2,4,6‐i‐Pr3‐C6H2)2SnO]3 ( 1 ), is reported and reveals this compound to contain an almost planar six‐membered ring. Redistribution reactions of 1 with cyclo‐(t‐Bu2SnO)3 and t‐Bu2SiCl2, respectively, failed and indicate an unusual kinetic inertness of the Sn–O bonds in 1 as compared to related molecular diorganotin oxides containing less bulkier substituents. The redistribution reaction of cyclo‐(t‐Bu2SnO)3 with cyclo‐(t‐Bu2SnS)2 leads to an equilibrium involving the trimeric diorganotin oxysulphides cyclot‐Bu2Sn(OSnt‐Bu2)2S ( 2 a ) and cyclot‐Bu2Sn(SSnt‐Bu2)2O ( 2 b ).  相似文献   

5.
New triphenylantimony(V) o‐amidophenolates (AP‐Me,Et)SbPh3 (1) and (AP‐Me,iPr)SbPh3 (2) with unsymmetrically substituted N‐aryl groups and (AP‐Et,Et)SbPh3 (3) with symmetrical N‐aryl group {AP‐R1,R2 is 4,6‐di‐tert‐butyl‐N‐[2‐alkyl(R1),6‐alkyl(R2)‐phenyl]‐o‐amidophenolate dianion} were synthesized and characterized in detail. Complexes were examined for dioxygen activity. The unsymmetrical complexes 1 and 2 were found to form different geometrical isomers (A and B) of spiroendoperoxides [L‐R1,R2(O2)]SbPh3 (4 and 5, respectively) with different dispositions of peroxide group and N‐aryl fragment (methyl and peroxide group are on the same side of the molecule in the less shielded isomer A, and on different sides in the more hindered isomer B). The isomer A prevails over isomer B, reflecting the possibility of steric control on the dioxygen‐binding reaction. Complex 3, where R1 = R2 = Et, formed the isomers 6A and 6B as 50:50. The ratio 4A:4B was 60:40 (for methyl‐ethyl containing complex 4) and it increased up to 80:20 for methyl‐isopropyl‐containing 5. The molecular structure of isomers 4A and 4B was confirmed by X‐ray analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

7.
The rigid‐rod polymers, poly(2,6‐naphthalenebenzobisoxazole) (Naph‐2,6‐PBO) and poly(1,5‐naphthalenebenzobisoxazole) (Naph‐1,5‐PBO) were synthesized by high temperature polycondensation of isomeric naphthalene dicarboxylic acids with 4,6‐diaminoresorcinol dihydrochloride in polyphosphoric acid. Expectedly, these polymers were found to have high thermal as well as thermooxidative stabilities, similar to what has been reported for other polymers of this class. The chain conformations of Naph‐2,6‐PBO and Naph‐1,5‐PBO were trans and the crystal structures of Naph‐2,6‐PBO and Naph‐1,5‐PBO had the three‐dimensional order, although the axial disorder existed for both Naph‐2,6‐PBO and Naph‐1,5‐PBO. Naph‐2,6‐PBO exhibited a more pronounced axial disorder than Naph‐1,5‐PBO because of its more linear shape. The repeat unit distance for Naph‐2,6‐PBO (14.15 Å) was found to be larger compared with that of Naph‐1,5‐PBO (12.45 Å) because of the more kinked structure of the latter. The extents of staggering between the adjacent chains in the ac projection of the crystal structure were 0.25c and 0.23c for Naph‐2,6‐PBO and Naph‐1,5‐PBO, respectively. Naph‐1,5‐PBO has a more kinked and twisted chain structure relative to Naph‐2,6‐PBO. The kinked and twisted chain structure of Naph‐1,5‐PBO in the crystal seems to prevent slippage between adjacent chains in the crystal structure. The more perfect crystal structure of Naph‐1,5‐PBO may be due to this difficulty in the occurrence of the slippage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1948–1957, 2006  相似文献   

8.
Two copper(I) complexes of compositions [Cu(HL)I]2 · EtOH ( 1 ) and [Cu(HL)3]I · MeOH ( 2 ) were synthesized via the reactions of HL [HL = 2(4,5‐diphenyl‐1H‐imidazol‐2‐yl)pyridine] and CuI in EtOH and MeOH, respectively, under solvothermal conditions. The complexes were characterized by X‐ray single crystal diffraction, IR spectroscopy, and elemental analysis. Compounds 1 and 2 are catalytically active towards ketalization reaction, giving various ketals under mild conditions.  相似文献   

9.
The structure of trans‐[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2‐dimethylpropane‐1,3‐diamine) was determined by a single‐crystal X‐ray diffraction study at 173 K. The analysis reveals that there are three crystallographically independent chromium(III) complex cations in the title compound. The chromium(III) atoms are coordinated by four nitrogen atoms of Me2tn and two chlorine atoms in a trans arrangement, displaying a distorted octahedral geometry. The two six‐membered chelate rings in three complex cations are oriented in an anti chair–chair conformation with respect to each other. The Cr–N and Cr–Cl bond lengths average 2.0862(2) and 2.3112(6) Å, respectively. The ZnCl42– have slightly distorted tetrahedral arrangement with Zn–Cl lengths and the Cl–Zn–Cl angles are influenced by hydrogen bonding. The resolved absorption maxima in the electronic d–d spectrum were fitted with a secular determinant for a quartet energy state of the d3 configuration in a tetragonal field. It is confirmed that the nitrogen atoms of the Me2tn ligand are strong σ donors, but the chloro ligands have weak σ‐ and π donor properties toward the chromium(III) ion.  相似文献   

10.
Solid State NMR Investigations on Sodium Oxothiophosphates(V) Sodium monothiophosphate(V) Na3PO3S is dimorphic. The metastable high temperature modification β‐Na3PO3S crystallizes hexagonal with a = 8.996(4) and c = 5.216(2)Å. According to 31P solid state NMR experiments, α‐Na3PO3S exhibits at 20 °C a non‐axial‐symmetric environment for the phosphorus nuclei in contrast to the results of the refined crystal structure. This discrepancy is discussed assuming ordered and disordered structural models. However, at 490 °C the chemical shift tensor of the phosphorus nuclei in α‐Na3PO3S is axial‐symmetric. So, the distortion of the phosphorus environment is abolished by the thermal motion of the atoms. The number of crystallographically distinguishable positions for phosphorus and for sodium in Na3PO2S2 and Na3POS3 can be confirmed in good agreement with their crystal structures using solid state NMR spectroscopy.  相似文献   

11.
Two nitrogen‐rich alkali metal salts based on nitrogen‐rich anion [Zn(bta)2]2–: {[Na2Zn(bta)2(H2O)8] · H2O}n ( 1 ) and {[K2Zn(bta)2(H2O)4]}n ( 2 ) were synthesized by reactions of alkali hydroxide, N,N‐bis(1H‐tetrazol‐5‐yl)amine (H2bta), and zinc chloride in aqueous solutions. The crystal structures of 1 and 2 were determined by low temperature single‐crystal X‐ray diffraction and fully characterized by elemental analysis and FT‐IR spectroscopy. The structures demonstrate that an infinite 1‐dimensional (1D) chain structure is constructed by Na+ ions and bridging water molecules in compound 1 , which is connected by extensive hydrogen bonds forming a complex 3D network, whereas compound 2 features a more complicated 3D metal‐organic framework (MOF). The thermal behaviors of 1 and 2 were investigated by differential scanning calorimetry (DSC) measurements. The DSC results illustrate that both compounds exhibit high thermal stabilities (decomposition temperature > 345 °C). In addition, the heats of formation were calculated on the basis of the experimental constant‐volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities towards impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.  相似文献   

12.
A series of new energetic salts based on 4‐nitro‐3‐(5‐tetrazole)furoxan (HTNF) has been synthesized. All of the salts have been fully characterized by nuclear magnetic resonance (1H and 13C), infrared (IR) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). The crystal structures of neutral HTNF ( 3 ) and its ammonium ( 4 ) and N‐carbamoylguanidinium salts ( 9 ) have been determined by single‐crystal X‐ray diffraction analysis. The densities of 3 and its nine salts were found to range from 1.63 to 1.84 g cm?3. Impact sensitivities have been determined by hammer tests, and the results ranged from 2 J (very sensitive) to >40 J (insensitive). Theoretical performance calculations (Gaussian 03 and EXPLO 5.05) provided detonation pressures and velocities for the ionic compounds 4 – 12 in the ranges 25.5–36.2 GPa and 7934–8919 m s?1, respectively, which make them competitive energetic materials.  相似文献   

13.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

14.
The reaction of a lanthanide(III) nitrate (Ln = Pr, Nd) with the base 2, 2′‐dipyridylamine (dpamH) afforded two very stable microcrystalline compounds. These compounds were characterized as complex salts with the general formula [Ln(NO3)6] · 3[dpamH‐H+] · H2O, where the dpamH ligand is not coordinated, but exists in its protonated form serving as counterion (dipyridylammonium cation), as it was revealed by single‐crystal X‐ray diffraction studies. Each one of the nitrate ions is coordinated, however, in a bidentate manner with the lanthanide(III) ion, which obtains coordination number twelve. All organic dpamH‐H+ cations are arranged in two columns parallel to the a axis of the cell forming pairs of almost parallel cationic molecules at a distance of about 3.5 Å. Inside each pair the molecules interact by strong π–π interactions. The water molecules, arranged between the inorganic anions [Ln(NO3)6]3–, bridge them by strong hydrogen bonds, involving the water proton and one nitrate oxygen. The lattice can be described as made from successive organic and inorganic alternating parallel columns interacting between them with strong hydrogen bonds. The thermal stability and decomposition mode of the two lanthanide compounds were studied by the simultaneous TG/DTG‐DTA technique and compared with the starting hexahydrate lanthanide(III) salts and the dipyridylamine.  相似文献   

15.
Reaction of Ti(OCH2CH2OR)4 (R?CH3 and C2H5) with 8‐hydroxyquinoline in benzene at room temperature resulted in the formation of Ti(C9H6NO)2(OCH2CH2OR)2, characterized by IR, 1H‐NMR, UV and mass spectroscopies. The molecular structure of Ti(C9H6NO)2(OCH2CH2OCH3)2 has been determined by single‐crystal X‐ray structure analysis. The geometry at titanium is a distorted octahedron, with the nitrogen atoms of quinolinate occupying the trans position with respect to oxygens of the 2‐methoxyethoxy groups. The prepared quinolinate derivatives of titanium alkoxides are very stable towards hydrolysis and harsh conditions are required for hydrolytic cleavage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Four complexes with the ligands dmit and dmio were synthesized. Reaction of (PhCO)2(dmit) and (PhCO)2(dmio) with MeONa afforded the intermediates 2‐thioxo‐1,3‐dithiole‐4,5‐dithiolate dianion and 2‐oxo‐1,3‐dithiole‐4,5‐dithiolate dianion, respectively. Reaction of the two dianions with (diphosphine)NiCl2 [diphosphine = (Z)‐1, 2‐bis(diphenylphosphanyl)ethane (dppv), 1,2‐bis(diphenylphosphanyl)benzene (dppb)] gave (dppv)Ni(dmit) ( 1 ), (dppb)Ni(dmit) ( 2 ), (dppv)Ni(dmio) ( 3 ), and (dppb)Ni(dmio) ( 4 ). This synthesis route was found to be an efficient pathway to prepare dmit and dmio ligand complexes. Complexes, 1 – 4 were fully characterized by elemental analysis and IR, 1H NMR, 13C NMR, and 31P NMR spectroscopy. In addition, the molecular structures of 1 , 3 and 4 were established by X‐ray diffraction.  相似文献   

17.
Two novel coordination polymers, [Cu(H2L)(bipy)(H2O)2] · H2O ( 1 ) and [Ni2(H2L)(bipy)2.5(H2O)6] · (H2L) · 7H2O ( 2 ) with the V‐shaped diphosphonate ligand (2,4,6‐trimethyl‐1,3‐phenylene)bis(methylene)diphosphonic acid (H4L) were synthesized via hydrothermal reactions in the presence of auxiliary ligand 4,4′‐bipyridine. Their structures were determined by single‐crystal X‐ray diffraction and further characterized by elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA). Compound 1 crystallizes in the Pnma space group and compound 2 crystallizes in the P21212 space group. They display square‐grid layer and bilayer two‐dimensional network, respectively.  相似文献   

18.
The solid solutions (V1–xWx)OPO4 with β‐VOPO4 structure type (0.0 ≤ x ≤ 0.01) and αII‐VOPO4 structure type (0.04 ≤ x ≤ 0.26) were obtained from mixtures of VVOPO4 and WVOPO4 by conventional solid state reactions and by solution combustion synthesis. Single crystals of up to 3 mm edge length were obtained by chemical vapor transport (CVT) (800 → 700 °C, Cl2 as a transporting agent). Single crystal structure refinements of crystals at x = 0.10 [a = 6.0503(2) Å, c = 4.3618(4) Å, R1 = 0.021, wR2 = 0.058, 21 parameters, 344 independent reflections] and x = 0.26 [a = 6.0979(2) Å, c = 4.2995(1) Å, R1 = 0.030, wR2 = 0.081, 21 parameters, 346 independent reflections] confirm the αII‐VOPO4 structure type (P4/n, Z = 2) with mixed occupancy V/W for the metal site. Due to the specific redox behavior of W5+ and V5+, solid solutions (V1–xWx)OPO4 should be formulated as (VIVxVV1–2xWVIx)OPO4. The valence states of vanadium and tungsten are confirmed by XPS measurements. V4+ with d1 configuration was identified by EPR spectroscopy and magnetic measurements. Electronic spectra of the solid solutions show the IVCT(V4+ → V5+) and the LMCT(O2– → V5+). (V0.74W0.26)OPO4 powders exhibit semi‐conducting behavior (Eg = 0.7 eV).  相似文献   

19.
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94.  相似文献   

20.
The mechanical properties and cold drawn‐induced micro and nanostructure of polyvinyl chloride (PVC)‐bentonite nanocomposites have been investigated. Molded sheets with 5 wt% concentration of bentonite and two processing additives were melt extruded and two‐roll‐milled processed. The flame retardant additive promoted polymer intercalation whereas a pigment dispersant promoted clay exfoliation, the polymer matrix showed isotropic orientation. The intercalated nanocomposite exhibited nanoplates oriented with their planes parallel to the molded sheet surface and the Young's modulus and yield stress were significantly enhanced relative to neat PVC. The strain at fracture (~144%) was slightly reduced relative to the matrix (~167%). Cold drawing induced molecular chain orientation along the tensile axis and preserved the orientation of the intercalated nanoclays. The fracture mechanism, as investigated via scanning electron microscopy (SEM) revealed plastic fracture mechanism (similar to neat PVC). On the other hand, the exfoliated nanocomposite did not show any improvement in mechanical properties but rather a significant decay of strain at fracture (~44%). The fractured region, as examined by SEM, exhibited microvoid morphology. Analysis of the fractured region showed PVC macromolecules oriented along the tensile axis but no preferred orientation of the nanoclays. The limited strain at fracture found for this material appears to be associated with the initially randomly oriented nanoclays being unable to orient under the tensile deformation. The nanoclays would act as stress concentrators leading to rapid material's failure due to loss of adhesion with the polymer matrix. The results suggest that exfoliated nanoclays could play a detrimental role when the nanocomposite is subjected to large deformations at temperatures well within the glassy regime. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号