首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2‐(Methylthio)aniline (H2L1) and 2‐(phenylthio)aniline (H2L2) were treated with n‐butyllithium to yield the corresponding anilides [LiHL1] and [LiHL2]. Recrystallization from diethyl ether and THF afforded the solvates [LiHL1(Et2O)] and [LiHL2(THF)2]. The X‐ray crystal structure determination revealed dimeric molecules which exhibit a centrosymmetric Li2N2 ring. In the case of [LiHL1(Et2O)] the SMe group is involved in Li coordination and in the case of [LiHL2(THF)2] the SPh group is part of an intramolecular N–H ··· S hydrogen bridge. The sodium anilides [NaHL1(DME)] and [NaHL2(DME)] were obtained from the reaction of H2L1 and H2L2 with sodium amide in DME as solvent. Like in the case of the lithium amides the sodium derivatives [NaHL1(DME)] and [NaHL2(DME)] display centrosymmetric Na2N2 cores. The coordination sphere of the sodium atoms is completed by DME molecules, which act as chelating ligands. In the case of [NaHL1(DME)] the DME molecules enable additionally a linkage of the dimeric subunits to give a chain structure. The potassium derivatives [KNHL1] and [KNHL2(DME)] were obtained from H2L1 and H2L2 and potassium hydride in DME as solvent. [KNHL1] displays a distinct structure based on [(KNHL1)2] dimers, which are linked by additional [KNHL1] units to give a 3D coordination polymer with {4.8.16(3)} topology. [KNHL2(DME)] forms dimers linked by bridging DME molecules to give a chain‐like coordination polymer.  相似文献   

2.
张曙光  冯云龙 《中国化学》2009,27(5):877-881
四唑酸(–CN4H)与羧酸(–COOH)具有相似的酸性。对苯酚四唑硫酮(H2L)可以作为单齿(–S或–N)或双齿(–N, N或–N, S)配体与金属离子配位形成配位化合物。合成了4个以H2L为配体的金属(II)配合物:Co(HL)2(Py)2(H2O)2 (1), [Mn(HL)2(H2O)4]·2H2O (2), Mn(HL)2(Phen)2 (3), and [Zn(HL)2(Phen)2]·0.5H2O·1.5CH3OH (4),并用X−射线单晶衍射法测定了晶体结构。晶体结构分析表明,在这些配合物中所有的中心金属原子均呈现六配位的八面体构型。在配合物1和2中,HL–配体以氧原子与中心金属原子配位,而在配合物3和4中HL–配体则以硫原子与中心金属原子配位。  相似文献   

3.
The structures of 2‐[(2,3‐dimethylphenyl)carbamoyl]benzenesulfonamide, 2‐[(3,4‐dimethylphenyl)carbamoyl]benzenesulfonamide and 2‐[(2,6‐dimethylphenyl)carbamoyl]benzenesulfonamide, all C15H16N2O3S, are stabilized by extensive intra‐ and intermolecular hydrogen bonds. In all three structures, the sulfonamide and carbamoyl groups are involved in hydrogen bonding. In the 2,3‐dimethyl and 2,6‐dimethyl derivatives, dimeric units and chains of molecules are formed parallel to the c axis. In the 3,4‐dimethyl derivative, the hydrogen bonding creates tetrameric units, resulting in macrocyclic R44(22) rings that form sheets in the ab plane. The three analogues are closely related to the fenamate class of nonsteroidal anti‐inflammatory drugs.  相似文献   

4.

The structure of catena-{bis[(μ-aqua)(diaqua)(pyrazine-2,6-dicarboxylato-O,N-μ-O')](calcium(II)} consists of dimeric units composed of two calcium(II) ions, two ligand molecules and six water molecules. The calcium ions are bridged by two bidentate oxygen atoms, each donated by one carboxylic group of the ligand. The Ca(II) ion is also coordinated by one oxygen atom of the second carboxylate group and the hetero-ring nitrogen atom belonging to the same ligand molecule. Both calcium ions in a dimer are bridged to the Ca(II) ions in adjacent dimers by a pair of water molecules forming infinite molecular ribbons. In addition, each Ca(II) ion is coordinated by three water molecules; one of them is used for bridging the adjacent dimer. The coordination polyhedron around the Ca(II) ion is a pentagonal bipyramid with two apices above and one apex below the equatorial plane. The same molecular pattern is observed in the structure of catena-{bis[(μ-aqua)(diaqua)(pyrazine-2,6-dicarboxylato-O,N-μ-O')](calcium(II)} dihydrate which, in addition, contains two solvation water molecules per unit cell. In both compounds the molecular ribbons are held together by extended systems of hydrogen bonds.  相似文献   

5.
Reaction of CuI with 1 or 2 equivalent(s) N,N′‐Bis(diphenylphosphino)‐2,6‐diaminopyridine (BDDP) gives two different complexes, [Cu(I)μ‐(BDDP‐κP,Npy)]2 ( 1 ) and [Cu(BDDP‐κP,Npy)2]I ( 2 ), in high yields. The determination of the molecular structure show that both CuI atoms are tetrahedrally coordinated, rather than a square‐planar geometry reported for Cr0, NiII‐BDDP complexes before, which contains a planar tridentate chelate ring system. The introduction of AuCl(tht) (tht = tetrahydrothiophene) into [Cu(BDDP‐κP,Npy)2]I leads unexpectedly to the formation of a digold complex 2,6‐[(ClAuPh2P)HN]2C5H3N and dimeric [Cu(I)μ‐(BDDP‐κP,Npy)]2.  相似文献   

6.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

7.
Lithiation of N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidine ( 1 ) with LiN(SiMe3)2 in a solvent mixture of toluene and TMEDA yields hexameric lithium N‐(2,6‐diisopropylphenyl)‐N′‐(2‐pyridylethyl)benzamidinate ( 2 ), which can be purified by recrystallization from a solvent mixture of toluene and THF. The three‐coordinate lithium ions have T‐shaped coordination spheres. The negative charge is delocalized within the 1,3‐diazaallylic system, which adopts a (syn‐Z)‐arrangement.  相似文献   

8.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

9.
A new Co(Ⅲ) complex with a tripodal amide ligand [CoL(N3)3] (L = N-acetyl- N',N'-bis-[(2-pyridyl)methyl]-ethylenediamine) has been synthesized and characterized structurally by X-ray diffraction. It crystallizes in orthorhombic, space group Pnma with a = 9.2515(19), b = 12.729(3), c = 17.273(4) A, V = 2034.0(7) A3, C16H20CoN13O, Mr = 469.38, Dc = 1.533 g/cm3, μ(MoKα) = 0.884 mm^-1, F(000) = 968, Z = 4, the final R = 0.0392 and wR = 0.0818 for 2430 observed reflections. In the complex, the amide ligand L acts as a tridentate fashion and coordinates to the Co(Ⅲ) ion through three nitrogen atoms, while the other three positions of the Co(Ⅲ) center are occupied by three terminal azide anions. The complex is connected as a 1D chain structure by intermolecular hydrogen bonds between the uncoordinated amide groups. In order to investigate the coordination ability, thermodynamic stability of the ligand L with the first-series transition metal ions (Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ)) has been studied by potentiometric titration, and the results show that the order of their stability constants conforms to the Irving-Williams sequence.  相似文献   

10.
11.
The title compounds, C7H8Cl2N+·Cl and C7H8Br2N+·Br, are isomorphous. In the crystal packing, layers parallel to the ac plane are formed by a classical N+—H⋯X hydrogen bond (X = halogen) and two XX contacts. A third XX contact links the layers, and a fourth, which is however very long, completes a ladder‐like motif of halogen atoms. Hydro­gen bonds of the form C—H⋯X play at best a subordinate role in the packing.  相似文献   

12.
The complexes [K(H2O)2LnL2] (Ln = La or Nd; L = 1,2‐benzenedisulfonate) and [K(H2O)Yb(H2O)4L2] were initially isolated fortuitously from attempts to prepare the corresponding Ln2L3 complexes from Ln2O3 and H2L in water. Indeed the bulk products from these reactions have the composition Ln2L3. Subsequently, deliberate syntheses by reacting equimolar amounts of Ln2L3 with K2L in water gave the complexes in good yield. X‐ray crystal structures of [K(H2O)2LnL2] (Ln = La or Nd) showed the complexes to be isostructural with a two dimensional polymeric network structure in which LnL2 units are linked into chains crosslinked by potassium ions. Each Ln is nine coordinate with solely sulfonate oxygen donor atoms. Between adjacent lanthanoid ions there are three different types of sulfonate bridges and two examples of each. Most noteworthy is highly unsymmetrical bridging through μ‐η2‐sulfonate oxygen atoms. Consequently, one Ln–O bond is ca. 0.5 Å longer than the other eight. Potassium is nine‐coordinate with seven sulfonate oxygen atoms and two aqua ligands, and surprisingly <K–O(sulfonate)> is much longer than <K–O(H2O)>. Pairs of potassium ions are linked by two μ‐η2‐sulfonate oxygen atoms, which are unsymmetrically bridging. The structure of [K(H2O)Yb(H2O)4L2] comprises discrete tetranuclear units containing two independent ytterbium ions, each coordinated by four water molecules and two chelating (via seven membered rings) disulfonate ligands, and two potassium ions, each coordinated by six sulfonate oxygen atoms and a water molecule. For each potassium, four of the coordinated sulfonate oxygen atoms are from sulfonate ligands bonded to one ytterbium atom and two from sulfonate ligands attached to the other ytterbium atom. In contrast to the Nd and La complexes, <K–O(sulfonate)> is shorter than <K–O(H2O)>.  相似文献   

13.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

14.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

15.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

16.
The title compound, N‐(2‐pyridylmethyl)salicylamide ( 1 ), was synthesized by ester aminolysis of methyl salicylate and 2‐picolylamine. In the presence of triethylamine as a supporting base, the salicylamide moiety reacts with the organodichlorosilanes RR′SiCl2 to form the desired six‐membered heterocycles of the type RR′Si–O–(o‐C6H4)–C(=O)N(pic), with pic being the 2‐pyridylmethyl (i.e., 2‐picolyl) moiety and RR′ = Me, Me ( 2a ); Me, Ph ( 2b ); Ph, Ph ( 2c ); Bn, Bn ( 2d ); All, Ph ( 2e ) and Ph, H ( 2f ). Despite the absence of notable ring strain release Lewis acidity (i.e., only a six‐membered chelate is formed by the dianion, and smaller rings are not present in the compound), the poor electron withdrawal from silicon by its C– or H– substituents and the flexible methylene bridge between the salicylamide and the pyridine moiety, the pyridine N donor atom furnishes pentacoordinate silicon coordination spheres in all of these compounds 2a – 2f . The coordination number of the silicon atom was confirmed by single‐crystal X‐ray diffraction analysis for the solid state and by 29Si NMR spectroscopy for the solution state.  相似文献   

17.
The 7‐(2‐bromoethyl) derivatives, 2a and 2b , of 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidine ( 1a ) and 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine ( 1b ) were synthesized by nucleobase anion alkylation (NaH, DMF) and crystallized. X‐Ray analyses of both compounds were performed, and they revealed significantly different positioning of the side chain relative to the heterocyclic ring, depending on the substituent (H or NH2) at C(2).  相似文献   

18.
The structures of the two title isomeric compounds (systematic names: N‐meth­yl‐N,2‐dinitro­aniline and N‐meth­yl‐N,3‐di­nitro­aniline, both C7H7N3O4) are slightly different because they exhibit different steric hindrances and hydrogen‐bonding environments. The aromatic rings are planar. The –N(Me)NO2 and –NO2 groups are not coplanar with the rings. Comparison of the geometric parameters of the ortho, meta and para isomers together with those of N‐meth­yl‐N‐phenyl­nitramine suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds to the nitramine group.  相似文献   

19.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

20.
Three copper(II) complexes, [Cu2(OAc)4L2] · 2CH3OH ( 1 ), [CuBr2L′2(CH3OH)] · CH3OH ( 2a ), and [CuBr2L′2(DMSO)] · 0.5CH3OH ( 2b ) {L = N‐(9‐anthracenyl)‐N′‐(3‐pyridyl)urea and L′ = N‐[10‐(10‐methoxy‐anthronyl)]‐N′‐(3‐pyridyl)urea} have been synthesized by the reaction of L with the corresponding copper(II) salts. Complex 1 shows a dinuclear structure with a conventional “paddlewheel” motif, in which four acetate units bridge the two CuII ions. In complexes 2a and 2b , the anthracenyl ligand L has been converted to an anthronyl derivative L′, and the central metal ion exhibits a distorted square pyramidal arrangement, with two pyridyl nitrogen atoms and two bromide ions defining the basal plane and the apical position is occupied by a solvent molecule (CH3OH in 2a and DMSO in 2b ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号