首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The new third‐generation synchrotron radiation source PETRA III located at the Deutsches Elektronen‐Synchrotron DESY in Hamburg, Germany, has been operational since the second half of 2009. PETRA III is designed to deliver hard X‐ray beams with very high brilliance. As one of the first beamlines of PETRA III the high‐resolution diffraction beamline P08 is fully operational. P08 is specialized in X‐ray scattering and diffraction experiments on solids and liquids where extreme high resolution in reciprocal space is required. The resolving power results in the high‐quality PETRA III beam and unique optical elements such as a large‐offset monochromator and beryllium lens changers. A high‐precision six‐circle diffractometer for solid samples and a specially designed liquid diffractometer are installed in the experimental hutch. Regular users have been accepted since summer 2010.  相似文献   

2.
The study of liquid–liquid interfaces with X‐ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double‐crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing‐incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å?1 in the surface normal and out to 14.8 Å?1 in the in‐plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X‐ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.  相似文献   

3.
An in‐vacuum double‐phase‐plate diffractometer for performing polarization scans combined with resonant X‐ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M4 edge on UO2 enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.  相似文献   

4.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

5.
T.J. Hicks 《物理学进展》2013,62(4):243-298
Neutron polarization analysis experiments of the past 25 years are reviewed. In that time the technique has progressed from a curiosity to being a useful tool to be used when needed. In early experiments, the polarization of the scattered beam was analysed in the same direction as the polarization of the incident beam but, in some later experiments, full three-dimensional polarization analysis has been employed. This article starts by writing down the interactions which the neutron has with condensed matter and deriving the cross-sections for scattering and final polarizations of the scattered beam. This is done displaying the spin state functions of the neutron explicitly. A variety of experiments is then reviewed, commencing with the elastic and inelastic scattering experiments performed by Moon, Riste and Koehler in the late 1960s. Elastic scattering experiments where it is important to separate nuclear and magnetic cross-sections such as antiferromagnetic defect scattering are reviewed together with separation out of the nuclear spin scattering for various purposes. Of particular interest are the fully three-dimensional analysis experiments which reveal more about the structure and domain populations of certain antiferromagnets. Inelastic experiments for which polarization analysis is vital are those on paramagnets at high temperatures where it is necessary to discriminate against phonon scattering. Spin glasses are treated as frozen paramagnets. Polarization analysis also has another role to play in the separation of magnetic modes in both paramagnets and ordered magnets, and several of these experiments are reviewed. Finally it is possible to tag the polarization of a neutron beam in time and space and to measure the result at another time and place and this through various techniques yields information about the change in neutron energy on scattering. The techniques of pseudo-random flipping time of flight, neutron spectral modulation and neutron spin-echo spectroscopy are briefly reviewed but the techniques of polarized-neutron-beam management are left to another review.  相似文献   

6.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

7.
A specialized diffractometer intended for use in studying real-time transient processes in condensed media, which also allows the recording of Bragg diffraction and small-angle neutron scattering spectra, has been created at the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research. Frequently, only the given formulation of the experiment with the continuous recording of information on the process enables us to obtain data required for the correct interpretation of events. One of the crucial parameters of such experiments is the minimal time interval in which sufficient statistics can be acquired. The diffractometer parameters make it possible to measure diffraction and small-angle spectra within minute and even second (for certain types of transition processes) ranges. The possibilities of neutron scattering are discussed as applied to the study of transient processes, the diffractometer design is described, and its main characteristics and the test experiment results are presented.  相似文献   

8.
冯灏  孙卫国  曾阳阳 《中国物理 B》2009,18(11):4846-4851
This paper introduces a correlation--polarization potential with high order terms for vibrational excitation in electron--molecule scattering. The new polarization potential generalizes the two-term approximation so that it can better reflect the dependence of correlation and polarization effects on the position coordinate of the scattering electron. It applies the new potential on the vibrational excitation scattering from N2 in an energy range which includes the 2Пg shape resonance. The good agreement of theoretical resonant peaks with experiments shows that polarization potentials with high order terms are important and should be included in vibrational excitation scattering.  相似文献   

9.
Using a general parametrization of the spin structure of the matrix element for elastic eN-scattering, in terms of three independent complex amplitudes, we found the expressions for all polarization observables, in electron–proton elastic scattering. This allows to suggest possible methods to measure the nucleon electromagnetic form factors, in presence of two-photon exchange. We show that the measurements of the differential cross section for electron and positron nucleon elastic scattering, in the same kinematical conditions, allows to extract the nucleon electromagnetic form factors. The same is correct for the polarization method, with the measurement of the Px,z components of the final nucleon polarization (for the scattering of longitudinally polarized electrons and positrons). An alternative way, in absence of positron beam, is to measure a definite set of T-odd polarization observables, which includes three different experiments or only T-even observables, with five independent experiments. In both cases, the ratio GE(Q2)/GM(Q2) is related to quantities of the order of and requires different polarization experiments with very high accuracy.  相似文献   

10.
A portable ultrahigh‐vacuum system optimized for in situ variable‐temperature X‐ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano‐islands are determined by in situ grazing‐incidence small‐angle X‐ray scattering and X‐ray absorption spectroscopy. A size reduction of about a factor of two of the nano‐islands due to silicide decomposition and Eu desorption is observed after sample annealing at 1270 K for 30 min.  相似文献   

11.
A newly developed high‐pressure rheometer for in situ X‐ray scattering experiments is described. A commercial rheometer was modified in such a way that X‐ray scattering experiments can be performed under different pressures and shear. First experiments were carried out on hyaluronan, a ubiquitous biopolymer that is important for different functions in the body such as articular joint lubrication. The data hint at a decreased electrostatic interaction at higher pressure, presumably due to the increase of the dielectric constant of water by 3% and the decrease of the free volume at 300 bar.  相似文献   

12.
The electron‐density distribution and the contribution to anomalous scattering factors for Fe ions in magnetite have been analyzed by X‐ray resonant scattering at the pre‐edge of Fe K absorption. Synchrotron X‐ray experiments were carried out using a conventional four‐circle diffractometer in the right‐handed circular polarization. Difference‐Fourier synthesis was applied with a difference in structure factors measured on and off the pre‐edge (Eon = 7.1082 keV, Eoff = 7.1051 keV). Electron‐density peaks due to X‐ray resonant scattering were clearly observed for both A and B sites. The real part of the anomalous scattering factor f′ has been determined site‐independently, based on the crystal‐structure refinements, to minimize the squared residuals at the Fe K pre‐edge. The f′ values obtained at Eon and Eoff are ?7.063 and ?6.682 for the A site and ?6.971 and ?6.709 for the B site, which are significantly smaller than the values of ?6.206 and ?5.844, respectively, estimated from the Kramers–Kronig transform. The f′ values at Eon are reasonably smaller than those at Eoff. Our results using a symmetry‐based consideration suggest that the origin of the pre‐edge peak is Fe ions occupying both A and B sites, where pd mixing is needed with hybridized electrons of Fe in both sites overlapping the neighbouring O atoms.  相似文献   

13.
A new set‐up is presented to measure element‐selective magnetization dynamics using the ALICE chamber [Grabis et al. (2003), Rev. Sci. Instrum. 74 , 4048–4051] at the BESSY II synchrotron at the Helmholtz‐Zentrum Berlin. A magnetic‐field pulse serves as excitation, and the magnetization precession is probed by element‐selective X‐ray resonant magnetic scattering. With the use of single‐bunch‐generated X‐rays a temporal resolution well below 100 ps is reached. The ALICE diffractometer environment enables investigations of thin films, described here, multilayers and laterally structured samples in reflection or diffuse scattering geometry. The combination of the time‐resolved set‐up with a cryostat in the ALICE chamber will allow temperature‐dependent studies of precessional magnetization dynamics and of damping constants to be conducted over a large temperature range and for a large variety of systems in reflection geometry.  相似文献   

14.
基于偏振门的动态光散射颗粒测量法的研究   总被引:1,自引:1,他引:0  
为了解决动态光散射纳米颗粒测量技术无法测量高浓度颗粒粒径的难题,提出了一种基于偏振门的动态光散射测量法。从动态光散射和Mie理论出发,理论分析了在高浓度溶液下多重散射效应对散射光偏振态和颗粒粒度测量结果的影响。根据散射光偏振特点,结合偏振门检测技术,改进了传统的动态光散射光学系统。实验研究了在低浓度和高浓度溶液时,不同偏振角度下的散射光强和粒度测量值,完善了散射光的偏振理论。采用90°偏振门检偏,通过各种浓度下的实验,证明了方法的可行性。该方法较之目前同类方法具有原理和结构简单,系统易于维护的特点。  相似文献   

15.
Neutron powder diffraction is increasingly recognized as one of the most powerful techniques for studying the structural and magnetic properties of advanced materials. Despite the growing demand to study an ever-increasing array of interesting materials, there is only a handful of neutron diffractometers available to serve the US neutron scattering community. This article describes the new high-resolution powder diffractometer that has recently been installed at the High Flux Isotope Reactor in Oak Ridge. The instrument is designed to provide an optimum balance between high neutron flux and high resolution. Due to its versatility the diffractometer can be employed for a large variety of experiments, but it is particularly adapted for refinements of structures with large interplanar spacings as well as of complex magnetic structures. In addition to traditional crystal and magnetic structural refinements, studies of phase transitions, thermal expansion, texture analysis, and ab initio structure solution from powder data can be undertaken.  相似文献   

16.
The intensity of two-phonon resonance Raman scattering in cubic crystals is expressed in terms of Clebsch-Gordan coefficients. A plot of the scattering intensity against the direction angles of the polarization vectors of the incident and scattered radiation is obtained. Several useful polarization relations are obtained for the scattering intensities in experiments with different geometries.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 75–80, August, 1978.  相似文献   

17.
《X射线光谱测定》2004,33(6):402-406
The employment of synchrotron radiation for refraction topography of materials has considerable advantages over standard x‐ray sources. The much higher beam intensity and the parallel and monochromatic radiation provide faster measurements and better angular and spatial resolution. X‐ray refraction techniques image the inner surface and interface concentration of micro‐structured materials. This effect of x‐ray optics is additional to small‐angle scattering by diffraction, when the scattering objects reach micrometre dimensions. We have developed x‐ray refraction techniques within the last decade in order to meet the growing demands for improved non‐destructive characterization of high‐performance composites, ceramics and other low‐density materials. Sub‐micron particle dimensions, the pore size of ceramics, the crack density distribution and single fibre debonding within damaged composites can be measured and visualized by computer‐generated interface topographs. For this purpose investigations are now being performed at the new hard x‐ray beamline of the Federal Institute for Materials Research and Testing (BAM) at BESSY, Berlin. This BAMline provides monochromatic radiation of photon energies from 5 to 60 keV from a double multilayer and/or a double‐crystal monochromator. A separate instrument is dedicated to the further development and application of synchrotron radiation refraction (SRR) topography. Different from conventional small‐angle scattering cameras with collimating slits and pinholes, scattering angles down to a few seconds of arc are selected by a single‐crystal analyser, similar to a Bonse–Hart diffractometer. A 20 µm spatial resolution of the scattering micro‐structures is achieved by a CCD camera with a fluorescent converter. First SRR topographs of aircraft composites [carbon fibre‐reinforced plastics (CFRP), carbon fibre‐reinforced ceramics (C/C), metal matrix ceramics (MMC)] will be reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We demonstrate a new technique that combines polarization sensitivity of the coherent anti‐Stokes Raman scattering (CARS) response with heterodyne amplification for background‐free detection of CARS signals. In this heterodyne interferometric polarization CARS (HIP‐CARS), the major drawbacks of polarization and heterodyne CARS are rectified. Using a home‐built picosecond optical parametric oscillator, we are able to address vibrational stretches between 600 and 1650 cm−1 and record continuous high‐resolution Raman equivalent HIP‐CARS spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
As an increasingly important structural‐characterization technique, grazing‐incidence X‐ray scattering (GIXS) has found wide applications for in situ and real‐time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8‐ID‐E at the Advanced Photon Source for high‐resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing‐incidence static and kinetic scattering, and coherent surface X‐ray photon correlation spectroscopy. The applicable systems that can be studied at 8‐ID‐E include liquid surfaces and nanostructured thin films.  相似文献   

20.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号